首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
    
This paper reports the effects of particle sizes on methanol steam reforming for hydrogen production in a reactor heated by waste heat. The unsteady model was set up, which has been applied to investigate the effects of particle sizes (1.77 mm–14.60 mm) on particle temperature, heat transfer quantity, overall coefficient of heat-transfer, etc. The heat transfer performance of waste heat recovery heat exchanger is improved when the particle size increases, which is conducive to increase hydrogen production. The particle temperature change rate, the specific enthalpy change rate, the moving velocity of the maximum heat release rate particle, the contribution rate of solid phases, the heat release rate and the overall coefficient of heat-transfer increase, but the effective time of heat transfer decreases. When the particle size increases from 1.77 mm to 14.60 mm, the solid phase average contribution rate increases from 89.43% to 94.03%, the overall coefficient of heat-transfer increases from 1.39 W m−2 K−1 to 13.41 W m−2 K−1, the heat release rate increases from 48.9% to 99.9% and the effective time of heat transfer reduces from 48 h to 6.7 h.  相似文献   

3.
A MATLAB/Simulink model is constructed of a fuel cell thermoelectric cogeneration system fed by a methanol steam reformer. The major components within the simulation model include the fuel cell stack, the hydrogen and oxygen supply systems, the heat recovery system, and the methanol steam reformer. It is shown that the simulation results for the dynamic response of the fuel cell given a step change in the load are in good qualitative agreement with the experimental results. Moreover, the simulation results show that the proposed thermoelectric cogeneration system has a thermal efficiency of 35%, an electrical efficiency of 45.6%, and a combined heat and power efficiency of 80.6%. The numerical results for the system efficiency deviate by no more than 4.4% from the experimental results. Finally, it is shown both numerically and experimentally that the methanol conversion rate is greater than 99%.  相似文献   

4.
Heterogeneous catalytic fixed bed usually suffers from severe limitations of mass and heat transfer. These disadvantages limit reformers to a low efficiency of catalyst utilization. Three catalyst activity distributions have been applied to force the reactor temperature profile to be near isothermal operation for maximization of methanol conversion. A plate-type reactor has been developed to investigate the influence of catalyst activity distribution on methanol steam reforming. Cold spot temperature gradients are observed in the temperature profile along the reactor axis. It has been experimentally verified that reducing cold spot temperature gradients contributes to the improvement of the catalytic hydrogen production. The lowest cold spot temperature gradient of 3 K is obtained on gradient catalyst distribution type A. This is attributed to good characteristics of local thermal effect. Low activity at the reactor inlet with gradual rise along with the reactor flow channel forms the optimal activity distribution. Hydrogen production rate of 161.3 L/h is obtained at the methanol conversion of 93.1% for the gradient distribution type A when the inlet temperature is 543 K.  相似文献   

5.
Fluid velocity distribution among microchannels plays important role on the reaction performances. In this work, the velocity distribution among microchannels with two different manifold structures is compared by a three-dimensional CFD model under two situations respectively, no reaction and methanol steam reforming occurs. Then the performances of methanol steam reforming in both plates are experimentally investigated, and the effect of manifold shape on the hydrogen production performances is qualitatively analyzed by the combination of simulation results of velocity distribution. It is found that the microchannel plate with right-angle manifold enables narrow velocity distributions under different entrance velocities and reaction temperatures, whether no reaction occurs or methanol steam reforming is progressing, which can be the critical element results in better conversion rate and selectivity of process than that of the microchannel plate with oblique-angle manifold. Optimizing the structural parameters to facilitate a relatively uniform velocity distribution to increase the hydrogen production performances may be a key factor to be considered.  相似文献   

6.
    
The feasibility of a direct internal reforming (DIR) solid oxide fuel cell (SOFC) running on wet palm‐biodiesel fuel (BDF) was demonstrated. Simultaneous production of H2‐rich syngas and electricity from BDF could be achieved. A power density of 0.32 W cm?2 was obtained at 0.4 A cm?2 and 800 °C under steam to carbon ratio of 3.5. Subsequent durability testing revealed that a DIR‐SOFC running on wet palm‐BDF exhibited a stable voltage of around 0.8 V at 0.2 A cm?2 for more than 1 month with a degradation rate of approximately 15 % / 1000 h. The main cause of the degradation was an increase in the ohmic resistance. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
In this work an integrated unit, combining a methanol steam-reforming cell (MSR-C) and a high temperature polymer electrolyte membrane fuel cell (HT-PEMFC) was operated at the same temperature (453 K, 463 K and 473 K) allowing thermal integration and increasing the system efficiency of the combined system. A novel bipolar plate made of aluminium gold plated was built, featuring the fuel cell anode flow field in one side and the reformer flow field on the other. The combined unit (MSR-C/HT-PEMFC) was assembled using Celtec® P2200N MEAs and commercial reforming catalyst CuO/ZnO/Al2O3 (BASF RP60). The water/methanol vaporisation originates oscillations in the vapour flowrate; reducing these oscillations increase the methanol conversion from 93% to 96%. The MSR-C/HT-PEMFC showed a remarkable high performance at 453 K. The integrated unit was operated during ca. 700 h at constant at 0.2 A cm?2, fed alternately with hydrogen and reformate at 453 K and 463 K. Despite the high operating temperature, the HT-PEMFC showed a good stability, with an electric potential difference decreasing rate at 453 K of ca. 100 μV h?1. Electrochemical impedance spectroscopy (EIS) analysis revealed an overall increase of the ohmic resistances and charge transfer resistances of the electrodes; this fact was assigned to phosphoric acid losses from the electrodes and membrane and catalyst particle size growth.  相似文献   

8.
A numerical simulation of methanol steam reforming in a microreactor integrated with a methanol micro-combustor is presented. Typical Cu/ZnO/Al2O3 and Pt catalysts are considered for the steam reforming and combustor channels respectively. The channel widths are considered at 700 μm in the baseline case, and the reactor length is taken at 20 mm. Effects of Cu/ZnO catalyst thickness, gas hourly space velocities of both steam reforming and combustion channels, reactor geometry, separating substrate properties, as well as inlet composition of the steam reforming channel are investigated. Results indicate that increasing catalyst thickness will enhance hydrogen production by about 68% when the catalyst thickness is increased from 10 μm to 100 μm. Gas space velocity of the steam reforming channel shows an optimum value of 3000 h−1 for hydrogen yield, and the optimum value for the space velocity of the combustor channel is calculated at 24,000 h−1. Effects of inlet steam to carbon ratio on hydrogen yield, methanol conversion, and CO generation are also examined. In addition, effects of the separating substrate thickness and material are examined. Higher methanol conversion and hydrogen yield are obtained by choosing a thinner substrate, while no significant change is seen by changing the substrate material from steel to aluminum with considerably different thermal conductivities. The produced hydrogen from an assembly of such microreactor at optimal conditions will be sufficient to operate a low-power, portable fuel cell.  相似文献   

9.
CH3OH steam reforming is an attractive way to produce hydrogen with high efficiency. In this study, CuO.xAl2O3 (x = 1, 2, 3, and 4) were fabricated based on the solid-state route, and the calcined samples were employed in methanol steam reforming at atmospheric pressure and in the temperature range of 200–450 °C. The results revealed that all samples have a high BET area (173–275 m2 g−1), and their crystallinity was reduced by increasing the alumina content in the catalyst formulation. The catalytic activity tests showed that the CH3OH conversion and H2 selectivity decreased by rising the Al2O3·CuO molar ratio. The methanol conversion enhanced from 13% to 85% by increasing the reaction temperature from 200 °C to 450 °C over the CuO·Al2O3 catalyst, due to the higher reducibility of this catalyst at lower temperatures compared to other prepared samples. The influence of calcination temperature (300–500 °C), GHSV (28,000–48000 ml h−1. g−1cat), feed ratio (C:W = 1:1 to 1:9), and reduction temperature (250–450 °C) was also determined on the yield of the chosen sample. The results revealed that the maximum methanol conversion decreased from 90 to 79% by raising the calcination temperature from 300 to 500 °C due to the reduction of surface area and sintering of species at high calcination temperatures.  相似文献   

10.
    
To improve hydrogen production performance of reforming, a plate-type microchannel carrier plate with a ridge structure was designed based on the mixing effect. The mixing effect of the ridge structure on the hydrogen production performance of reforming was analyzed. Then the effects of geometric parameters (shape, size, spacing, and tilt angle) of the ridge structure on heat, mass transfer, and the hydrogen production performance of the reforming process were modelled and simulated. Finally, data analysis and structural optimisation of microchannels with the ridge structure were conducted via methanol steam reforming hydrogen production experiments. The experimental results show that the trapezoidal ridge structure microchannel (T-type0) achieved the best hydrogen production performance, whose methanol conversion rate was 60.8%, under the gas hourly space velocity of 48,757 mL/(g&h). Especially compared with the ordinary rectangular microchannel structure (O-type0), the methanol conversion rate of the trapezoidal ridge structure microchannel increased by 25.2%. Moreover, the pressure drop of this microchannel did not increase significantly, indicating that the structure did not significantly increase the pressure drop loss while enhancing the heat and mass transfer. Therefore, the ridge structure proposed in this paper can effectively improve heat and mass transfer performance and the hydrogen production efficiency of the microchannel.  相似文献   

11.
Hydrogen production by steam reforming of methanol was studied over several Cu/SAB-15-based nanocatalysts in a parallel-type microchannel reactor. The catalysts were prepared through impregnation method and XRD, BET, FT-IR, FE-SEM, TEM, H2-TPR and TGA techniques were used to characterize surface and structural properties of the synthesized catalysts. The effects of reaction temperature, WHSV and S/C molar ratio on the methanol conversion and selectivities of the gaseous products were studied. Then, effects of the metallic promoters were investigated to improve performance of the catalysts. It was revealed that ZnO and CeO2 promoters have positive effects on decreasing CO selectivity and ZrO2 promotes methanol conversion. Furthermore, ZrO2 and CeO2 were declared to improve stability of the catalyst. Among the evaluated catalysts, Cu/ZnO/CeO2/ZrO2/SBA-15 can provide optimal methanol conversion with low CO concentration in the gaseous products. For this catalyst, the methanol conversion and hydrogen selectivity reached 95.2% and 94.6%, respectively.  相似文献   

12.
    
The method of Computational Fluid Dynamics is used to predict the process parameters and select the optimum operating regime of a methanol reformer for on-board production of hydrogen as fuel for a 3 kW High-Temperature Proton Exchange Membrane Fuel Cell power system. The analysis uses a three reactions kinetics model for methanol steam reforming, water gas shift and methanol decomposition reactions on Cu/ZnO/Al2O3 catalyst. Numerical simulations are performed at single channel level for a range of reformer operating temperatures and values of the molar flow rate of methanol per weight of catalyst at the reformer inlet. Two operating regimes of the fuel processor are selected which offer high methanol conversion rate and high hydrogen production while simultaneously result in a small reformer size and a reformate gas composition that can be tolerated by phosphoric acid-doped high temperature membrane electrode assemblies for proton exchange membrane fuel cells. Based on the results of the numerical simulations, the reactor is sized, and its design is optimized.  相似文献   

13.
    
A novel multichannel micro packed bed reactor with bifurcation inlet manifold and rectangular outlet manifold was developed to improve the methanol steam reforming performance in this study. The commercial CuO/ZnO/Al2O3 catalyst particles were directly packed in the reactor. The flow distribution uniformity in the reactor was optimized numerically. Experiments were conducted to study the influences of steam to carbon molar ratio (S/C), weight hourly space velocity (WHSV), reactor operating temperature (T) and catalyst particle size on the methanol conversion rate, H2 production rate, CO concentration in the reformate, and CO2 selectivity. The results show that increase of the S/C and T, as well as decrease of the WHSV and catalyst particle size, both enhance the methanol conversion. The CO concentration decreases as the S/C and WHSV increase as well as the T and catalyst particle size decrease. Moreover, T plays a more important role on the methanol steam reforming performance than WHSV and S/C. The impacts on CO concentration become insignificant when the S/C is higher than 1.3, WHSV is larger than 1.34 h−1 and T is lower than 275 °C. A long term stability test of this reactor was also performed for 36 h and achieved high methanol conversion rate above 94.04% and low CO concentration less than 1.05% under specific operating conditions.  相似文献   

14.
A novel catalyst precursor ZnAl-LDHs/γ-Al2O3 was prepared by in-situ synthesis method, and the copper was supported on calcined hydrotalcite catalyst precursor by wet impregnation. The correlation between the structure and the catalytic activity for methanol steam reforming was studied by XRD, SEM, TPR, chemisorption N2O, IR and N2 adsorption techniques. The results showed that the ZnAl-LDHs was successfully synthesized by in-situ synthesis method on γ-Al2O3 and the copper mass fraction had a great effect on the interactions between support and copper species. Furthermore, the catalyst reducibility and copper surface area evidently influenced catalytic activity for methanol steam reforming. The 10% Cu/γ-Al@MMO exhibited the best catalytic activity, that was, the methanol conversion was 99.98% and the CO concentration was only 0.92% at 300 °C in hydrogen production by methanol steam reforming.  相似文献   

15.
A microreactor consisting of two parallel channels is numerically simulated where methanol steam reforming takes place in one channel, and the required heat is supplied by methanol oxidation in the other channel. Effects of different parameters on methanol conversion, hydrogen yield and CO concentration are examined. Results from the parametric study are then used to propose conditions for high methanol conversion and hydrogen yield. A microreactor with enhanced output conditions is thus designed which is capable of producing a gas stream consisting of 74% hydrogen (dry). CO concentration in the generated synthesis gas stream is low enough to require only a PROX reactor for CO clean-up, eliminating the need for a bulky water–gas shift reactor. The produced hydrogen from an assembly of such microreactors can feed a low-power PEM fuel cell. A cluster of these microreactors would take a volume of about 91 cm3 to feed a typical 30-watt PEM fuel cell.  相似文献   

16.
The construcal tree-shaped network is introduced into the design of a methanol steam microreactor in the context of optimization of the flow configuration. A three-dimensional model for methanol steam reaction in this designed microreactor is developed and numerically analyzed. The methanol conversion, CO concentration in the product and the total pressure drop of the gases in the microreactor with constructal tree-shaped network are evaluated and compared with those in the serpentine reactor. It is found that the reaction of methanol steam reforming is enhanced in the constructal tree-shaped microreactor, since the tree-shaped reactor configuration, which acts an optimizer for the reactant distribution, provides a reaction space with larger surface-to-volume ratio and the reduction of reactant velocities in the branches. Compared with the serpentine microreactor, the constructal reactor possesses a higher methanol conversion rate accompanied with a higher CO concentration. The conversion rate of the constructal microreactor is more than 10% over that of serpentine reactor. More particularly, the reduction of flow distance makes the constructal microreactor still possess almost the same pressure drop as the corresponding serpentine reactor, despite that the bifurcations induce extra local pressure loss, and the reduction of channel size in branches also causes pressure losses.  相似文献   

17.
    
Nano-rod(R), nano-particle(P) and sponginess(S) of ceria samples were used to study catalytic performance of hydrogen production by methanol steam reforming. The samples were prepared by hydrothermal method, precipitation method, and sol-gel method, respectively, and the CuO was supported on the different morpholopy of CeO2 samples by wet impregnation. SEM, TEM, XRD, XRF, BET, H2-TPR, XPS and N2O titration methods were used to study correlation between the structure and the catalytic performance for methanol steam reforming. The results showed that the morphology of the prepared CeO2 support dramatically influenced the performance of catalysts. Due to the stronger interaction between copper oxide and ceria support, the CuO/CeO2-R catalyst had exhibited the better catalytic activity than those of the CuO/CeO2P and CuO/CeO2S catalysts. Moreover, higher Cu dispersion, lower reduction temperature of CuO, and higher content of active species Cu+ were also advantageous to raising catalytic effects. Besides, with the highest content of surface Ce3+, the CuO/CeO2-R had estimated the content of oxygen vacancy on the surface of the catalyst. The existence of surface oxygen vacancy had a positive effect on the methanol steam reforming.  相似文献   

18.
    
Methanol steam reforming (MSR) has been regarded as a promising hydrogen supply method for proton exchange membrane fuel cell (PEMFC), while the efficiency for hydrogen production and integration method of MSR with PEMFC are two major challenges for commercial applications. Here, we present a highly efficient MSR system for hydrogen production and supply for low temperature PEMFC (LT-PEMFC). The MSR system has a highly compact microreactor, wherein MSR, methanol combustion, and CO selective methanation reactions occur. The CO selective methanation is used to reduce the content of CO concentration to remit the CO poison, then the reformate of MSR system is mixed with air and supply for the LT-PEMFC. Then, experimental tests are conducted to investigate the effects of operating parameters on hydrogen production. A staged supply strategy is proposed, it enables to startup the system within 11.2 min and with methanol consumption of 34.72 g. Results show that the methanol conversion can reach up to 93.0% and system's energy efficiency of 76.2%. After integration with a LT-PEMFC, a maximum 160 W electricity can be generated. The results obtained in this study demonstrated that the developed MSR system can be used to supply hydrogen for LT-PEMFC and able to power mobile device requiring hundreds of watts power consumption.  相似文献   

19.
This paper presents the results of a theoretical investigation whose aim was the development of a simulation tool for performance prediction of a steam reforming hydrogen production plant, and particularly of its overall energetic efficiency. A 1500 Nm3/h hydrogen production plant was simulated. Field data coming from an industrial plant were used for model validation in both design and off design operating conditions. To evaluate the plant performances in terms of energetic efficiency, a particular attention was paid to the simulation of all plant auxiliaries consumptions. Nevertheless the large uncertainty in most of the field data values, the model was able to capture all the relevant phenomena taking place in all the plant components, from reformer reactor up to CO2 sequestration unit, in the investigated plant capacity range (40–100%).  相似文献   

20.
    
The effects of Fe and Cr species on Cu-based supported and spinel oxide catalysts during methanol steam reforming (MSR) reaction and the Cu–Fe–Cr synergy were investigated. Herein, a series of Al2O3 supported catalysts were prepared. And their MSR performance was evaluated. The addition of Fe and Cr had a significant promotion on MSR performance compared with the corresponding Cu-based catalyst. In order to unravel the beneficial effect, CuFe, CuCr, CuAl, CuFeAl, CuCrAl and CuFeCr catalysts were synthesized by the hydrothermal method. And BET, XRD, SEM-EDX mapping, HRTEM, H2-TPR, NH3-TPD, CH3OH-TPD and XPS characterizations were performed. Results showed that CuFeCr catalyst possessed superior MSR behaviors. At the temperature of 260–270 °C, its methanol conversion was maintained above 80% during a time-on-stream stability of 100 h. And it exhibited better fast start-up behaviors than commercial catalyst. In combination with the characterizations, it was assumed that the excellent catalytic performance of the CuFeCr catalyst was attributed to its moderate Cu+ content and Ovac/Oads ratio. And it was the result of the Cu–Fe–Cr synergistic effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号