首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Nickel-based catalysts used for dry reforming of methane (DRM) suffer from coking and sintering, which hinders the broad application of the process in the industry. Thermogravimetric analysis was employed to investigate coking on a commercial nickel catalyst with an anti-coking additive (CaO). It was found that the catalyst sintered at temperatures between 850 and 900 °C, which resulted in permanent catalyst deactivation. For the tested Ni/CaO–Al2O3 catalyst, the coking and carbon gasification rates are equal at the temperatures of 796–860 °C, depending on the heating rate (5–20 K/min). Significant differences in the temperatures related to the maxima on TG curves for various heating rates follow from DRM kinetics. This work reveals that the coking rate is lower at higher temperatures. After 50 min, the weight gains amount to about 20% and 40% at 800 °C and 600 °C, respectively. Lower sample weight gains were observed at higher temperatures for a methane decomposition reaction over the Ni/CaO catalyst, unlike for the second tested catalyst – activated carbon. For the nickel catalyst, the reaction order for methane decomposition is 0.6 in the temperature range 640–800 °C, while the sign of the activation energy changes at 700 °C. The elaborated kinetic equation predicts the initial CH4 decomposition rate with 15% accuracy.  相似文献   

2.
The catalytic methane decomposition is the leading method for COx-free hydrogen and carbon nanomaterial production. In the present study, calcium-silicate based bimetallic Ni–Fe catalysts have been prepared and used to decompose the methane content of the ‘product gas’ obtained in the biomass gasification process for increasing total hydrogen production. Al2O3 was used as secondary support on calcium silicate based support material where Ni or Ni–Fe were doped by co-impregnation technique. The activity of catalysts was examined for diluted 6% methane-nitrogen mixture in a tubular reactor at different temperatures between 600 °C and 800 °C under atmospheric pressure, and data were collected using a quadrupole mass spectrometer. Catalysts were characterized by XRD, SEM/EDS, TEM, XPS, ICP-MS, BET, TPR, and TGA techniques. The relation between structural and textural properties of catalysts and their catalytic activity has been investigated. Even though the crystal structure of catalysts had a significant effect on the activity, a direct relation between the BET surface area and the activity was not observed. The methane conversion increased by increasing temperature up to 700 °C. The highest methane conversion has been obtained as 69% at 700 °C with F3 catalyst which has the highest Fe addition, and the addition of Fe improved the stability of catalysts. Moreover, carbon nanotubes with different diameter were formed during methane decomposition reaction, and the addition of Fe increased the formation tendency.  相似文献   

3.
Ni-containing mixed oxides derived from layered double hydroxides with various amounts of yttrium were synthesized by a co-precipitation method at constant pH and then obtained by thermal decomposition. The characterization techniques of XRD, elemental analysis, low-temperature N2 sorption, H2-TPR, CO2-TPD, TGA and TPO were used on the studied catalysts. The catalytic activity of the catalysts was evaluated in the CO2 methanation reaction performed at atmospheric pressure. The obtained results confirmed the formation of nano-sized mixed oxides after the thermal decomposition of hydrotalcites. The introduction of yttrium to Ni/Mg/Al layered double hydroxides led to a stronger interaction between nickel species and the matrix support and decreased nickel particle size as compared to the yttrium-free catalyst. The modification with Y (0.4 and 2 wt%) had a positive effect on the catalytic performance in the moderate temperature region (250–300 °C), with CO2 conversion increasing from 16% for MO-0Y to 81% and 40% for MO-0.4Y and MO-2.0Y at 250 °C, respectively. The improved activity may be correlated with the increase of percentage of medium-strength basic sites, the stronger metal-support interaction, as well as decreased crystallite size of metallic nickel. High selectivity towards methane of 99% formation at 250 °C was registered for all the catalysts.  相似文献   

4.
Pure hydrogen and carbon nanotubes were produced via thermo-catalytic decomposition (TCD) of methane over Ni-loaded MCM-22 catalysts in a vertical fixed-bed reactor. The effect of reaction temperature, gas hourly space velocity (GHSV), Cu/Zn promoter and time on stream on the methane conversion, hydrogen and carbon yields were studied over the synthesized catalysts. The catalytic performance of the 50%Ni–5%Cu–5%Zn/MCM-22 catalyst was found to be highly stable compared to other catalysts. The highest conversion of methane over 50%Ni–5%Cu–5%Zn/MCM-22 catalyst reached 85% with 947% carbon yield. Methane conversion increased on increasing the reaction temperature up to 750 °C and decreased thereafter at higher temperatures. XRD and TEM analysis of the carbon byproduct revealed that graphitic carbon appeared as a major crystalline phase during the reaction. HRTEM results revealed that most of the Ni particles were located on the tip of the carbon nanofibers/nanotubes formed on the spent catalysts. The carbon nanofibres have an average outer diameter of approximately 20–40 nm with an average length of 450–500 nm. Four types of carbon nanofibers were detected and their formation strongly depended on the reaction temperature, time on stream and degree of the interaction between the metallic Ni particle and support. The optimum conditions for CNT production within the experimental ranges were found at a reaction temperature of 750 °C.  相似文献   

5.
Catalytic methane decomposition (CMD) receives increasing attention for co-production of COx-free hydrogen and valuable carbon by-product, and the catalyst plays a crucial role on methane conversion and the product features. Unsupported nickel catalysts derived from commercial nickel foam (NF) were prepared for CMD by mild pre-treatment. Effects of the pre-treatment method (acid treatment, thermal treatment, acid-thermal treatment and hydrogen reduction) and reaction temperature were explored on the NF morphology and CMD reactivity in a fixed-bed reactor. It is found that catalytic performance of the NF-based catalyst is highly dependent on the pre-treatment and reaction temperature. The thermal and acid-thermal treatments could greatly promote the catalytic activity (with methane conversion up to 74.6% and 91.8%, respectively) at 850 °C. To fully release potential abilities of the catalyst, the carbon deposited spent catalyst was recycled as a fresh catalyst in the CMD test by several strategies. High and stable methane conversion (up to around 90%–93%) can be achieved by simulating the operation model in a fluidized-bed reactor for a continuous CMD process. Besides, the carbon deposited spent catalyst could serve as a promising candidate of supercapacitor electrode material.  相似文献   

6.
This paper investigates the hot gas temperature effect on enhancing hydrogen generation and minimizing tar yield using zeolite and prepared Ni-based catalysts in rice straw gasification. Results obtained from this work have shown that increasing hot gas temperature and applying catalysts can enhance energy yield efficiency. When zeolite catalyst and hot gas temperature were adjusted from 250 °C to 400 °C, H2 and CO increased slightly from 7.31% to 14.57%–8.03% and 17.34%, respectively. The tar removal efficiency varies in the 70%–90% range. When the zeolite was replaced with prepared Ni-based catalysts and hot gas cleaning (HGC) operated at 250 °C, H2 contents were significantly increased from 6.63% to 12.24% resulting in decreasing the hydrocarbon (tar), and methane content. This implied that NiO could promote the water-gas shift reaction and CH4 reforming reaction. Under other conditions in which the hot gas temperature was 400 °C, deactivated effects on prepared Ni-based catalyst were observed for inhibiting syngas and tar reduction in the HGC system. The prepared Ni-based catalyst worked at 250 °C demonstrate higher stability, catalyst activity, and less coke decomposition in dry reforming. In summary, the optimum catalytic performance in syngas production and tar elimination was achieved when the catalytic temperature was 250 °C in the presence of prepared Ni-based catalysts, producing 5.92 MJ/kg of lower heating value (LHV) and 73.9% tar removal efficiency.  相似文献   

7.
Running dry reforming of methane (DRM) reaction at low-temperature is highly regarded to increase thermal efficiency. However, the process requires a robust catalyst that has a strong ability to activate both CH4 and CO2 as well as strong resistance against deactivation at the reaction conditions. Thus, this paper examines the prospect of DRM reaction at low temperature (400–600 °C) over CeO2–MgO supported Nickel (Ni/CeO2–MgO) catalysts. The catalysts were synthesized and characterized by XRD, N2 adsorption/desorption, FE-SEM, H2-TPR, and TPD-CO2 methods. The results revealed that Ni/CeO2–MgO catalysts possess suitable BET specific surface, pore volume, reducibility and basic sites, typical of heterogeneous catalysts required for DRM reaction. Remarkably, the activity of the catalysts at lower temperature reaction indicates the workability of the catalysts to activate both CH4 and CO2 at 400 °C. Increasing Ni loading and reaction temperature has gradually increased CH4 conversion. 20 wt% Ni/CeO2–MgO catalyst, CH4 conversion reached 17% at 400 °C while at 900 °C it was 97.6% with considerable stability during the time on stream. Whereas, CO2 conversions were 18.4% and 98.9% at 400 °C and 900 °C, respectively. Additionally, a higher CO2 conversion was obtained over the catalysts with 15 wt% Ni content when the temperature was higher than 600 °C. This is because of the balance between a high number of Ni active sites and high basicity. The characterization of the used catalyst by TGA, FE-SEM and Raman Spectroscopy confirmed the presence of amorphous carbon at lower temperature reaction and carbon nanotubes at higher temperature.  相似文献   

8.
In this study, the ammonia decomposition reaction to produce COx-free hydrogen is investigated in a microwave reactor system using nickel-based catalysts supported by different materials. Unlike the activated carbon supported catalyst (Ni@AC), the alumina supported catalyst (Ni@Alumina) is mixed with carbon in a 1:1 ratio to reach the necessary reaction temperature in the microwave reactor. Ni@Alumina gives an overall hydrogen production rate of 73 mmol/min.gcat with 99% conversion at 400 °C under pure ammonia flow (60 ml/min). Ni@Alumina outperforms Ni@AC under microwave reactor conditions, but underperforms Ni@AC under the conventional testing, which is done for comparison. It is suggested that selective heating of nickel species in Ni@Alumina enables better performance in the microwave reactor in comparison to Ni@AC. On the other hand, high surface area and small nickel particles present in the Ni@AC structure in comparison to the Ni@Alumina structure, causes higher activity in the conventional reactor at temperatures over 550 °C. Between 400 and 550 °C, both Ni@Alumina and Ni@AC have substantially lower activity under conventional heating than microwave heating when compared at the same temperatures. Hot spot formation and microwave selective catalytic effect are considered as possible reasons for the improved performance of microwave reactor system.  相似文献   

9.
Catalytic direct decomposition of dimethyl sulfide (DMS) was performed using solid acid catalysts to develop an on-site hydrogen-free desulfurization system for utilization in small systems, such as fuel cells. DMS was decomposed to CH3SH and H2S at 500 °C on SiO2–Al2O3 and various zeolite catalysts. Among the catalysts, H-BEA zeolite with Si/Al = 18.5 (H-BEA-18.5) showed the highest performance for DMS decomposition at 500 °C. While the catalytic activity at 500 °C maintained a DMS conversion of greater than 30% for up to 114 h, a large amount of carbon deposition caused gradual deterioration. At a low temperature of 400 °C, DMS decomposition to CH3SH on H-BEA-18.5 continued for 100 h with a stable conversion of approximately 30%, although the adsorption of DMS on the catalyst surface was also confirmed. To achieve a high performance for the DMS decomposition, high temperatures were required to avoid the adsorption of sulfur species.  相似文献   

10.
Thermocatalytic decomposition of methane is proposed to be an economical and green method to produce COx-free hydrogen and carbon nanomaterials. In this work, the catalytic performance of Ni–Mn–Ru/Al2O3 catalyst under different reaction parameters (such as, pre-reduction temperature, reaction temperature, space velocity, etc.) were investigated to obtain optimum reaction conditions. The catalysts were characterized by N2 adsorption/desorption, X-ray diffraction, inductively coupled plasma optical emission spectrometer and hydrogen temperature programmed reduction. For the 60 wt% Ni-5 wt% Mn-10 wt% Ru/Al2O3 catalyst using Ru(NO)(NO3)x(OH)y(x + y = 3) as Ru precursor, the methane conversion rate obtained is high as 93.76% under optimum reaction conditions (reduction at 700 °C for 1 h, reaction at 750 °C, GSHV = 36,000 mL/gcat h). Carbon nanomaterials formed during the process of methane thermocatalytic decomposition were characterized by scanning electron microscopy, thermal gravimetric analyzer and Raman spectroscopy. Carbon nanofibers were formed over all the Ni–Mn–Ru/Al2O3 catalysts.  相似文献   

11.
In this study, a series of BaO-MnOx mixed oxide catalysts were synthesized by the mechanochemical method and employed in lean methane catalytic combustion (MCC) at low temperatures. The synthesized catalysts were characterized by XRD, BET, TGA, FT-IR, H2-TPR, O2-TPD, and FESEM analyses. The results indicated that the 10 wt% BaO-MnOx catalyst with a BET surface area of 25 m2 g?1 possessed the best catalytic performance. The higher activity of the 10 wt% BaO-MnOx catalyst was due to the higher ability to supply oxygen through the components during the MCC process. The light-off temperature corresponding to 50% of the methane conversion was about 330 °C, which was about 50 °C lower than the pure MnOx. Moreover, for the BaO(10)-MnOx catalyst, the 10 and 90% of methane conversion temperatures were about 305 and 427 °C, respectively. Also, the 10 wt% BaO-MnOx catalyst exhibited high catalytic stability under dry feed condition at 450 °C for 50 h. Furthermore, the influence of various parameters such as calcination temperature, feed ratio, GHSV, pretreatment condition, and presence of water vapor in the feedstock was studied on the catalytic performance.  相似文献   

12.
Co-precipitation cum modified Stöber method was adopted to produce nano-Ni/SiO2 (n-Ni/SiO2) catalyst and conducted a series of methane decomposition kinetic experiments in a fixed bed pilot plant. Methane decomposition activity of n-Ni/SiO2 catalyst was quantified by considering thermodynamic deposition of carbon at a temperature range of 550–650 °C and methane partial pressure from 0.2 to 0.8 atm. The utmost methane conversion of 18.87 mmol/gcat min was obtained at 650 °C and methane partial pressure of 0.8 atm. The findings concluded that the enhancement occurred with carbon formation rate when increasing the methane partial pressure is very much evident at higher temperature such as 650 °C. However, the intensity in methane decomposition descending tendency was declined at lower reaction temperature. The effects of methane partial pressure and reaction temperature on the specific molar carbon formation rate were also examined. The calculated reaction order and activation energy were 1.40 and 61.1 kJ mol?1, respectively. The kinetic experiments showed the existence of an optimum reaction condition to achieve the highest performance of n-Ni/SiO2 catalyst in terms of methane decomposition rate. However, carbon accumulation ceases once complete catalyst deactivation occurred at certain reaction conditions such as high temperature and lower methane partial pressure. Virgin nanocatalyst and as-produced nanocarbons were studied with BET, XRD, and TEM.  相似文献   

13.
Methane steam reforming is currently the most widely used hydrogen production reaction in industry today. Ni/Nb–Al2O3 catalysts were prepared by treatment under H2, N2, and air atmosphere prior to reduction and applied for methane steam reforming reaction at low temperature (400–600 °C). The hydrogen-treated catalysts increased catalytic activity, with 55.74% methane conversion at S/C = 2, GSVH of 14400 mL g?1 h?1 and 550 °C. The H2 atmosphere treatment enhanced the Ni–Nb interaction and the formation of stable, tiny, homogeneous Ni particles (6 nm), contributing to good activity and stability. In contrast, the catalysts treated with nitrogen and air showed weaker interactions between Ni and Nb species, whereas the added Nb covered the active sites, which caused the decrease in activity. Meanwhile, carbon accumulation was also observed. This work is informative for preserving small nano-sized nickel particles to enhance catalytic performance.  相似文献   

14.
Ni–Cu catalysts derived from hydrotalcite-like compounds were prepared and evaluated in aqueous-phase reforming of glycerol. The catalysts were characterized by chemical composition, textural analysis, crystalline structure and reducibility. The reaction was carried out in a batch reactor with solution of 10 wt.% glycerol, at 250 and 270 °C. A maximum glycerol conversion of 60% was achieved at 270 °C. In the gas phase, the H2 selectivity was always higher than 80% and formation of CO was very low (<3%) at 250 °C. The addition of Cu decreased the formation of methane. H2 is consumed during the reaction at 270 °C, mainly for Cu-containing catalysts, with simultaneous formation of propylene glycol in the liquid phase. Acetol, lactic acid and acetaldehyde were also formed in the liquid phase, at both temperatures.  相似文献   

15.
The Ni/pillared-bentonite catalysts with high BET area were synthesized and used in dry reforming reaction. The effects of different parameters such as calcination temperature, OH/Al3+ ratio, temperature and time of pillaring process and the content of nickel on the textural and catalytic properties of the synthesized catalysts were studied. The results indicated that the 15 wt% Ni catalyst supported on pillared bentonite prepared under specified conditions (OH/Al3+ = 2.2, pillaring temperature of 40 °C and pillaring time of 3 h) possessed the highest BET area (90.80 m2/g). Also, this catalyst possessed higher catalytic activity and stability with lower amount of deposited carbon in comparison to other prepared catalysts in methane reforming with CO2.  相似文献   

16.
Biogas can be highlighted as a renewable raw material for the production of hydrogen. In this study, Ni-M-Al catalysts were evaluated to obtain hydrogen from the biogas reforming. The catalysts were synthesized by coprecipitation with Ni and Al with a molar percentage of 55 and 33%, respectively, varying the third component M = Mg, Li, Ca, La, Cu, Co, Zn, with a molar percentage of 11%. The reactions were carried out in a fixed bed tubular reactor using a synthetic biogas (70% of CH4 and 30% of CO2). The results showed that the CH4 conversion increased with the temperature up to 700 °C for La11, Cu11, and Zn11 catalysts. CO2 conversion increased for all catalysts in the range of 500–700 °C. The H2/CO molar ratios observed in the reactions were higher than 1 due to the contribution of the CH4 decomposition reaction. The catalyst containing La presented better stability in the reactions due to the stronger acid sites and high resistance to sintering. Carbon filaments were produced by all catalysts at 600 and 700 °C. Sintering was the main cause of deactivation of the catalysts, except for La11.  相似文献   

17.
The catalytic steam reforming of acetic acid over both Ni/ and Co/Ce0·75Zr0·25O2 (CZO) catalysts in the temperature range of 450–650 °C and steam-to-carbon molar ratios of 3–9 was studied. It was found that the complete acetic acid conversion was achieved for all the conditions investigated. Nevertheless, the C–C bond cleavage conversion was attained less than the acetic acid conversion at a given condition due to carbon deposition on the catalyst. However, hydrogen yield was obtained in the same trend as C–C bond cleavage conversion as well. The results revealed that the CZO as an active support prefers to promote the ketonization reaction to the C-C bond cleavage reaction at a lower temperature, and vice versa at a higher temperature. The Ni/CZO catalyst exhibits higher C–C bond cleavage conversion than the Co/CZO catalyst particularly at 650 °C whereas the Co/CZO catalyst is more active for ketonization reaction at low temperatures. However, as an increase in reaction temperature, the Co/CZO catalyst promotes ketonization reaction more pronouncedly toward aldol-condensation reaction thus giving rise to the carbon deposition. The results deduced from the effect of space velocity on the activity and product distribution suggested that the steam reforming of acetic acid over Ni/CZO catalyst is dominated by decomposition of acetic acid, while that of Co/CZO catalyst by ketonization reaction.  相似文献   

18.
Biogas derived from livestock manure and food residue contains CO2 and H2S as well as methane. The effect of CO2 and H2S coexistence on the production of hydrogen and solid carbon by methane decomposition over iron oxide catalysts was investigated. The catalytic activity for methane decomposition was decreased by the coexistence of H2S. Moreover, the activity decrease was aggravated by the coexistence of CO2 as well as H2S, and higher temperature was required to mitigate the activity decrease by the coexistence of CO2. By increasing the amount of catalyst, the upstream catalyst was preferentially poisoned, but the downstream catalyst developed catalytic activity thanks to its sacrifice. With 2 g of catalyst, the maximum conversion of pure methane was about 85% at 840 °C, but it was slightly less than 80% in the presence of H2S or H2S + CO2. When the catalyst amount was increased to 4 g, the conversion of pure methane was about 90% at 800 °C, but 84% in the presence of H2S and 80% in the presence of H2S + CO2. The poisoning by H2S was irreversible at low temperatures but became reversible at higher temperatures. Since H2S is adsorbed by the deposited carbon, the procedure for further removal of H2S may be omitted. The coexistence of H2S also affected the shape of the deposited carbon. Although carbon-based catalysts are known to be effective for methane decomposition in the presence of H2S, iron oxide catalysts have the advantage of superior methane conversion at low temperatures. By flowing methane with CO2 and H2S from the downstream side after the reaction flowing from the upstream side for a certain period of time, the catalytic lifetime was drastically extended and the amount of hydrogen and solid carbon produced was dramatically increased, compared to the case of flowing from upstream all the way.  相似文献   

19.
Catalytic methane decomposition (CMD) was studied by employing biochar and activated char of biosolids’ origin under different reaction temperatures and methane concentrations. Higher reaction temperatures and lower inlet methane concentrations were found to be favourable for achieving higher methane conversion. A maximum initial methane conversion of 71.0 ± 2.5 and 65.2 ± 2.3% was observed for activated char and biochar, respectively at 900 °C and for 10% CH4 in N2 within the first 0.5 h of experiment. Active sites from oxygen containing carboxylic acid functional groups and smaller pore volume and pore diameter were attributed to assist in higher initial methane conversion for biochar and activated char respectively. However, rapid blockages of active sites and surfaces of biochar and activated char due to carbon formation have caused a rapid decline in methane conversion values in the first 0.5 h. Later on, crystalline nature of the newly formed carbon deposits due to their higher catalytic activity have stabilised methane conversion values for an extended experimental period of 6 h for both biochar and activated char. The final conversion values at the end of 6 h experiment with biochar and activated char at 900 °C and for 10% CH4 in N2, were found to be 40 ± 1.9 and 35 ± 1.6% respectively. Analysing carbon deposits in detail revealed that carbon nanofiber type structures were observed at 700 °C while nanospheres of carbon were found at 900 °C.  相似文献   

20.
Small-size cobalt nanoparticles (NPs) distributed on nitrogen doped carbon support (Co/NC-X) were prepared by pyrolysis of ZIF-67 at various temperatures (X = 500, 600,700 and 800 °C) in nitrogen atmosphere and utilized as catalysts for hydrogen production through ammonia decomposition. Characterizations of the catalysts including XRD, HRTEM, XPS, H2-TPR, CO2-TPD, etc., were conducted for structure analysis. The N–C plate obtained from pyrolysis was coated with Co NPs to hinder its aggregation, which made the Co NPs dispersed evenly and increased their dispersion. The calcination temperature and the strong base of the support can adjust the strength of Co–N bond. The activity of the Co/NC-X catalysts is attributed to the high content of Co0 and the moderate Co–N bond strength. The ammonia decomposition activity of Co/NC-X catalysts in this paper is higher than many reported Co-based catalysts. Co/NC-600 catalyst demonstrates an ammonia conversion of 80% at 500 °C with a space velocity of 30,000 ml gcat?1 h?1, corresponding to a hydrogen production rate of 26.8 mmol H2 gcat?1 min?1. The work provides insight for the development of highly active cobalt-based catalysts for hydrogen production through ammonia decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号