首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of fuel cells is promised to enable the distributed generation of electricity in the near future. However, the infrastructure for production and distribution of hydrogen, the fuel of choice for fuel cells, is currently lacking. Efficient production of hydrogen from fuels that have existing infrastructure (e.g., natural gas, gasoline or LPG) would remove a major drawback to use fuel cells for distributed power generation.The aim of this paper is to define the better operating conditions of an innovative hydrogen generation system (the fuel processing system, FP) based on LPG steam reforming, equipped with a membrane shift reactor, and integrated with a PEMFC (Proton Exchange Membrane Fuel Cell) stack of 5 kWel.With respect to the conventional hydrogen generation systems, the use of membrane reactors (MRs) technology allows to increase the hydrogen generation and to simplify the FP-PEMFC plant, because the CO removal system, needed to reduce the CO content at levels required by the PEMFC, is avoided.Therefore, in order to identify the optimal operating conditions of the FP-PEMFC system, a sensitivity analysis on the fuel processing system has been carried out by varying the main operating parameters of both the reforming reactor and the membrane water gas shift reactor. The sensitivity analysis has been performed by means of a thermochemical model properly developed.Results show that the thermal efficiency of the fuel processing system is maximize (82.4%, referred to the HHV of fuels) at a reforming temperature of 800 °C, a reforming pressure of 8 bar, and an S/C molar ratio equal to 6. In the nominal operating condition of the PEMFC stack, the FP-PEMFC system efficiency is 36.1% (39.0% respect to the LHV).  相似文献   

2.
In this paper, the main achievements of several European research projects on Pd based membranes and Pd membrane reactors for hydrogen production are reported. Pd-based membranes have received an increasing interest for separation and purification of hydrogen. In addition, the integration of such membranes in membrane reactors has been widely studied for enhancing the efficiency of several dehydrogenation reactions. The integration of reaction and separation in one multifunctional reactor allows obtaining higher conversion degrees, smaller reactor volumes and higher efficiencies compared with conventional systems. In the last decade, much thinner dense Pd-based membranes have been produced that can be used in membrane reactors. However, the thinner the membranes the higher the flux and the higher the effect of concentration polarization in packed bed membrane reactors. A reactor concept that can circumvent (or at least strongly reduce) concentration polarization is the fluidized bed membrane reactor configuration, which improves the heat transfer as well. Tecnalia and TU/e are involved in several European projects that are related to development of fluidized bed membrane reactors for hydrogen production using thin Pd-based (<5 μm) supported membranes for different application: In DEMCAMER project a water gas shift (WGS) membrane reactor was developed for high purity hydrogen production. ReforCELL aims at developing a high efficient heat and power micro-cogeneration system (m-CHP) using a methane reforming fluidized membrane reactor. The main objective of FERRET is the development of a flexible natural gas membrane reformer directly linked to the fuel processor of the micro-CHP system. FluidCELL aims the Proof-of-Concept of a m-CHP system for decentralized off-grid using a bioethanol reforming membrane reactor. BIONICO aims at applying membrane reactors for biogas conversion to hydrogen. The fluidized bed system allows operating at a virtually uniform temperature which is beneficial in terms of both membrane stability and durability and for the reaction selectivity and yield.  相似文献   

3.
Hydrogen production via steam methane reforming with in situ hydrogen separation in fluidized bed membrane reactors was simulated with Aspen Plus. The fluidized bed membrane reactor was divided into several successive steam methane sub-reformers and membrane sub-separators. The Gibbs minimum free energy sub-model in Aspen Plus was employed to simulate the steam methane reforming process in the sub-reformers. A FORTRAN sub-routine was integrated into Aspen Plus to simulate hydrogen permeation through membranes in the sub-separator based on Sieverts' law. Model predictions show satisfactory agreement with experimental data in the literature. The influences of reactor pressure, temperature, steam-to-carbon ratio, and permeate side hydrogen partial pressure on reactor performances were investigated with the model. Extracting hydrogen in situ is shown to shift the equilibrium of steam methane reactions forward, removing the thermodynamic bottleneck, and improving hydrogen yield while neutralizing, or even reversing, the adverse effect of pressure.  相似文献   

4.
This paper presents a thermodynamic study of a glycerol steam reforming process, with the aim of determining the optimal hydrogen production conditions for low- and high-temperature proton exchange membrane fuel cells (LT-PEMFCs and HT-PEMFCs). The results show that for LT-PEMFCs, the optimal temperature and steam to glycerol molar ratio of the glycerol reforming process (consisting of a steam reformer and a water gas shift reactor) are 1000 K and 6, respectively; under these conditions, the maximum hydrogen yield was obtained. Increasing the steam to glycerol ratio over its optimal value insignificantly enhanced the performance of the fuel processor. For HT-PEMFCs, to keep the CO content of the reformate gas within a desired range, the steam reformer can be operated at lower temperatures; however, a high steam to glycerol ratio is required. This requirement results in an increase in the energy consumption for steam generation. To determine the optimal conditions of glycerol steam reforming for HT-PEMFC, both the hydrogen yield and energy requirements were taken into consideration. The operational boundary of the glycerol steam reformer was also explored as a basic tool to design the reforming process for HT-PEMFC.  相似文献   

5.
Steam reforming of natural gas produces the majority of the world's hydrogen (H2) and it is considered as a cost-effective method from a product yield and energy consumption point of view. In this work, we present a simulation and an optimization study of an industrial natural gas steam reforming process by using Aspen HYSYS and MATLAB software. All the parameters were optimized to successfully run a complete process including the hydrogen production zone units (reformer reactor, high temperature gas shift reactor HTS and low temperature gas shift reactor LTS) and the purification zone units (absorber and methanator). Optimum production of hydrogen (87,404 MT/year) was obtained by fixing the temperatures in the reformer and the gas shift reactors (HTS & LTS) at 900 °C, 500 °C and 200 °C respectively while maintaining a pressure of 7 atm, and a steam to carbon ratio (S/C) of 4. Moreover, ~99% of the undesired CO2 and CO gases were removed in the purification zone and a reduction of energy consumption of 77.5% was reached in the heating and cooling units of the process.  相似文献   

6.
One of the most promising technologies for lightweight, compact, portable power generation is proton exchange membrane (PEM) fuel cells. PEM fuel cells, however, require a source of pure hydrogen. Steam reforming of hydrocarbons in an integrated membrane reactor has potential to provide pure hydrogen in a compact system. Continuous separation of product hydrogen from the reforming gas mixture is expected to increase the yield of hydrogen significantly as predicted by model simulations. In the laboratory-scale experimental studies reported here steam reforming of liquid hydrocarbon fuels, butane, methanol and Clearlite® was conducted to produce pure hydrogen in a single step membrane reformer using commercially available Pd–Ag foil membranes and reforming/WGS catalysts. All of the experimental results demonstrated increase in hydrocarbon conversion due to hydrogen separation when compared with the hydrocarbon conversion without any hydrogen separation. Increase in hydrogen recovery was also shown to result in corresponding increase in hydrocarbon conversion in these studies demonstrating the basic concept. The experiments also provided insight into the effect of individual variables such as pressure, temperature, gas space velocity, and steam to carbon ratio. Steam reforming of butane was found to be limited by reaction kinetics for the experimental conditions used: catalysts used, average gas space velocity, and the reactor characteristics of surface area to volume ratio. Steam reforming of methanol in the presence of only WGS catalyst on the other hand indicated that the membrane reactor performance was limited by membrane permeation, especially at lower temperatures and lower feed pressures due to slower reconstitution of CO and H2 into methane thus maintaining high hydrogen partial pressures in the reacting gas mixture. The limited amount of data collected with steam reforming of Clearlite® indicated very good match between theoretical predictions and experimental results indicating that the underlying assumption of the simple model of conversion of hydrocarbons to CO and H2 followed by equilibrium reconstitution to methane appears to be reasonable one.  相似文献   

7.
The ethanol steam reforming reaction has been considered for producing pure hydrogen to be used for feeding a PEM fuel cell of power 4 kW. As an innovative technology, Pd–Ag thin wall membranes are proposed for building membrane reactors: accordingly, the energy efficiency analysis of the processes producing hydrogen from ethanol steam reforming has been carried out and, particularly, the comparison among a traditional process and different membrane processes is reported.  相似文献   

8.
This paper investigates the possibility of increasing the energetic efficiency of a hydrogen production industrial plant through the introduction of dense membranes in the steam reforming process. A simulation tool, developed in the Aspen Plus® framework has been used to model a 1500 N m3/h hydrogen production plant. Besides the original plant layout with a PSA purification unit, three different membrane installation configurations have been considered: before the shift reactor, at the exit of the shift reactor and before the PSA unit. For all the three configurations the plant capacity was set at 75%, changing the permeated hydrogen flow. The membrane surface and cost were also estimated for each solution. Membranes installation just after the shift reactor gives the best solution in terms of both plant energetic efficiency and cost reduction.  相似文献   

9.
Efficient conversion of methane to hydrogen has emerged as a significant challenge to realizing fuel cell-based energy systems. Autothermal microchannel reactors, coupling of exothermic and endothermic reactions in parallel channels, have become one of the most promising technologies in the field of hydrogen production. Such reactors were utilized as an intensified design for conducting the endothermic steam methane reforming reaction. The energy required by the endothermic process is supplied directly through the separating plates of the reactor structure from the exothermic process occurring on the opposing side. Optimal design problems associated with transport phenomena in such an autothermal system were analyzed. Various methods for designing and operating autothermal reactors employed in steam methane reforming were discussed. Computational fluid dynamics simulations were performed to identify the underlying principles of process intensification, and to delineate several design and operational features of the intensified reforming process. The results indicated that the autothermal reactor is preferable to be thermally conductive to ensure its structural integrity and maximum operating regime. However, the thermal properties of the reactor structure are not essential due to efficient heat transfer existing between endothermic and exothermic process streams. A reactor design which minimizes the mass transfer resistance is highly required, and the channel dimension is of critical importance. Furthermore, the challenges presented by the efficient operation of the autothermal system were identified, along with demonstrating the implementation of transport management in order to improve overall reactor performance and to mitigate extreme temperature excursions.  相似文献   

10.
The methane dry-reforming and steam reforming reactions were studied as a function of pressure (1–20 atm) at 973 K in conventional packed-bed reactors and a membrane reactors. For the dry-reforming reaction in a conventional reactor the production yield of hydrogen rose and then decreased with increasing pressure as a result of the reverse water-gas shift reaction in which the hydrogen reacted with the reactant CO2 to produce water. For the steam reforming reaction the production yield of hydrogen kept increasing with pressure because the forward water-gas shift reaction produced additional hydrogen by the reaction of CO with water. In the membrane reactors the methane conversion and the hydrogen production yields were higher for both the dry-reforming and steam reforming reactions, but for the dry reforming at high pressure half of the hydrogen was transformed into water. Thus, the dry-reforming reaction is not practical for producing hydrogen.  相似文献   

11.
Methane steam reforming is one of the most important pathways for producing high purity hydrogen. In this context, the use of fixed-bed catalytic reactors equipped with hydrogen perm-selective membranes is an interesting alternative for producing high purity hydrogen in one single step. In this work, this reactor is studied by means of numerical simulations using a 2D model, consisting of mass, energy and momentum balances. The fixed-bed is considered to be formed by Ru/SiO2 catalyst particles, especially tailored for steam reforming at low temperature and steam-to-carbon ratio, whereas a composite palladium membrane was considered for hydrogen permeation. The model was validated with experimental data, and the adequacy of a simplified 1D model to simulate the membrane reactor was evaluated and discussed in comparison to the 2D model. Then, the model was used to study the influence of the main operating variables (inlet temperature, pressure, space velocity, steam excess and sweep gas rate in the permeate side) on the reactor performance. Finally, the optimum operating conditions, corresponding to a maximum hydrogen permeation rate, were determined, and the behaviour of the optimized reactor is analysed in detail.  相似文献   

12.
There is great consensus that hydrogen will become an important energy carrier in the future. Currently, hydrogen is mainly produced by steam reforming of natural gas/methane on large industrial scale or by electrolysis of water when high-purity hydrogen is needed for small-scale hydrogen plants. Although the conventional steam reforming process is currently the most economical process for hydrogen production, the global energy and carbon efficiency of this process is still relatively low and an improvement of the process is key for further implementation of hydrogen as a fuel source. Different approaches for more efficient hydrogen production with integrated CO2 capture have been discussed in literature: Chemical Looping Combustion (CLC) or Chemical Looping Reforming (CLR) and membrane reactors have been proposed as more efficient alternative reactor concepts relative to the conventional steam reforming process. However, these systems still present some drawbacks. In the present work a novel hybrid reactor concept that combines the CLR technology with a membrane reactor system is presented, discussed and compared with several other novel technologies. Thermodynamic studies for the new reactor concept, referred to as Membrane-Assisted Chemical Looping Reforming (MA-CLR), have been carried out to determine the hydrogen recovery, methane conversion as well as global efficiency under different operating conditions, which is shown to compare quite favorably to other novel technologies for H2 production with CO2 capture.  相似文献   

13.
In this paper, a novel process for hydrogen production by steam reforming of natural gas with inherent capture of carbon dioxide by chemical-looping combustion is proposed. The process resembles a conventional circulating fluidized bed combustor with reforming taking place in reactor tubes located inside a bubbling fluidized bed. Energy for the endothermic reforming reactions is provided by indirect combustion that takes place in two separate reactors: one for air and one for fuel. Oxygen is transferred between the reactors by a metal oxide. There is no mixing of fuel and air so carbon dioxide for sequestration is easily obtained. Process layout and expected performance are evaluated and a preliminary reactor design is proposed. It is found that the process should be feasible. It is also found that it has potential to achieve better selectivity towards hydrogen than conventional steam reforming plants due to low reactor temperatures and favorable heat-transfer conditions.  相似文献   

14.
A fuel processor was constructed which incorporated two burners with direct steam generation by water injection into the burner exhaust. These burners with direct water vaporization enabled rapid fuel processor start-up for automotive fuel cell systems. The fuel processor consisted of a conventional chain of reactors: auto-thermal reformer (ATR), water gas shift (WGS) reactor and preferential oxidation (PrOx) reactor. The criticality of steam to the fuel reforming process was illustrated. By utilizing direct vaporization of water, and hydrogen for catalyst light-off, excellent start performance was obtained with a start time of 20 s to 30% power and 140 s to full power.  相似文献   

15.
16.
Planet Earth is facing accelerated global warming due to greenhouse gas emissions from human activities. The United Nations agreement at the Paris Climate Conference in 2015 highlighted the importance of reducing CO2 emissions from fossil fuel combustion. Hydrogen is a clean and efficient energy carrier and a hydrogen-based economy is now widely regarded as a potential solution for the future of energy security and sustainability. Although hydrogen can be produced from water electrolysis, economic reasons dictate that most of the H2 produced worldwide, currently comes from the steam reforming of natural gas and this situation is set to continue in the foreseeable future. This production process delivers a H2-rich mixture of gases from which H2 needs to be purified up to the ultra-high purity levels required by fuel cells (99.97%). This driving force pushes for the development of newer H2 purification technologies that can be highly selective and more energy efficient than the traditional energy intensive processes of pressure swing adsorption and cryogenic distillation. Membrane technology appears as an obvious energy efficient alternative for producing the ultra-pure H2 required for fuel cells. However, membrane technology for H2 purification has still not reached the maturity level required for its ubiquitous industrial application. This review article covers the major aspects of the current research in membrane separation technology for H2 purification, focusing on four major types of emerging membrane technologies (carbon molecular sieve membranes; ionic-liquid based membranes; palladium-based membranes and electrochemical hydrogen pumping membranes) and establishes a comparison between them in terms of advantages and limitations.  相似文献   

17.
The reactors designed for 5-kW high-temperature polymer electrolyte fuel cells are able to evaluate the performance of the steam reformer and each water–gas shift reactor independently. The goal of the experiments is to obtain the best overall performance for steam reforming while minimizing the CO concentration and maximizing the hydrogen yield. For this purpose, the performance of the steam reforming reactor unit with two types of flow paths was evaluated while evaluating the performance of various series of component combinations of the high-, middle-, and low-temperature shifts. Via experiment, thermal control followed by the appropriate heating and cooling mechanism is key to successful reaction performance. In addition to an individual unit-based experiment, numerical analyses were executed to understand the local chemical performance inside a reactor unit. These numerical analyses show good agreement with the experimental data measured at the outlet and provide a comprehensive detailed internal reaction mechanism such as the thermal conditions and CO concentration effect. Both experiments and numerical analyses can fundamentally improve the reaction performance by finding the optimal values of many control parameters.  相似文献   

18.
Enriched Methane is a gas mixture consisting of methane and a certain amount of hydrogen (10–30%vol) that finds out several applications such as fuel of Internal Combustion Engines (ICEs). To produce EM, a steam reforming reactor whose heat duty is supplied by a molten-salt stream heated up by a concentrating solar power (CSP) plant can be used, in order to generate the hydrogen steam by solar energy. In fact, molten salts at temperatures up to 550 °C can allow to reach the necessary thermal level inside the reactor to promote steam reforming reaction.  相似文献   

19.
Producing syngas and hydrogen from biofuels is a promising technology in the modern energy. In this work results of authors’ research aimed at design of supported membranes for oxygen and hydrogen separation are reviewed. Nanocomposites were deposited as thin layers on Ni–Al foam substrates. Oxygen separation membranes were tested in CH4 selective oxidation/oxi-dry reforming. The hydrogen separation membranes were tested in C2H5OH steam reforming. High oxygen/hydrogen fluxes were demonstrated. For oxygen separation membranes syngas yield and methane conversion increase with temperature and contact time. For reactor with hydrogen separation membrane a good performance in ethanol steam reforming was obtained. Hydrogen permeation increases with ethanol inlet concentration, then a slight decrease is observed. The results of tests demonstrated the oxygen/hydrogen permeability promising for the practical application, high catalytic performance and a good thermochemical stability.  相似文献   

20.
《Journal of power sources》2001,92(1-2):17-25
A thermodynamic analysis of hydrogen production from ethanol has been carried out with respect to solid polymer fuel cell applications. Ethanol processors incorporating either a steam reformer or a partial oxidation reactor connected to water gas shift and CO oxidation reactors were considered and the effect of operating parameters on hydrogen yield has been examined. Employment of feeds with high H2O/EtOH ratio results in reduced energy efficiency of the system. When hydrogen, non-converted in the fuel cell, is used to supply heat in the steam reformer, the effective hydrogen yield is essentially independent of the temperature of the reformer and the water gas shift reactor. Optimal operating conditions of partial oxidation processors have been determined assuming an upper limit for the preheat temperature of the feed. Results are discussed along with other practical considerations in view of actual applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号