共查询到20条相似文献,搜索用时 15 毫秒
1.
Qizhao Wang Guoxia Yun Yan Bai Ning An Yutao Chen Rongfang Wang Ziqiang Lei Wenfeng Shangguan 《International Journal of Hydrogen Energy》2014
TiO2 photocatalysts loaded CuS and NiS as co-catalyst were prepared by hydrothermal approach and characterized by XRD, UV–visible DRS, BET, XPS, SEM and TEM. When TiO2 was loaded MS as co-catalyst, it showed higher photocatalytic activities for splitting water into hydrogen in methanol aqueous solution under 500 W Xe lamp. Among the photocatalysts with various compositions, the maximum evolution of H2 obtained from 5 wt% CuS–5 wt% NiS–TiO2 sample was about 800 μmol h−1, which was increased up to about twenty-eight times than that of TiO2 alone. It was proven that CuS, NiS can act as effective dual co-catalysts to enhance the photocatalytic H2 production activity of TiO2. 相似文献
2.
《International Journal of Hydrogen Energy》2020,45(38):18912-18921
The design and development of noble metal-free, low-cost and stable co-catalyst are of great significance to the practical application of photocatalysts. In this work, the Mo incorporated Ni nanosheets (MoNi NSs) are successfully prepared and loaded onto g-C3N4 via a simple and controllable method. The controlled loading of MoNi NSs with an optimal Mo intake can greatly enhance the photocatalytic H2-evolution property of g-C3N4 (Mo0.25Ni0.75/CN5). Specifically, the Mo0.25Ni0.75/CN5 exhibits the highest photocatalytic H2-evolution rate of 273.2 μmol h−1 (5464 μmol h−1 g−1), which is the highest rate under one-solar light in the g-C3N4 systems coupled with noble-metal-free co-catalysts. The greatly enhanced photocatalytic H2-evolution activity of MoNi/g-C3N4 is attributed to the role of MoNi as an outstanding co-catalyst to promote the carriers’ separation and transfer, and accelerate the surface H2 evolution reaction (HER). 相似文献
3.
Jarnuzi Gunlazuardi Eniya Listiani Dewi 《International Journal of Hydrogen Energy》2017,42(38):24014-24025
Photocatalytic activity of Pt-loaded TiO2 nanotube arrays (Pt-TNTA) in the presence of glycerol as a sacrificial agent to produce H2 has been studied. The effects of Pt loading and the methods by which it is deposited on TNTA (chemical reduction and photo-assisted deposition) were carefully examined. Intermediate products were also identified in order to scrutinise the reaction pathways of hydrogen generation in this particular system. FESEM imaging confirmed the formation of nantotubular structures of TiO2 with average inner diameter of 80 nm, wall thickness of 20 nm, and length of approximately 2.5 μm. The generated nanotube arrays were of anatase structure with crystallite size within the range of 22–30 nm. Pt was successfully deposited on the surface of TNTA, as corroborated by EDX spectra, elemental mapping and TEM analysis. Band gap narrowing upon Pt loading was implied by UV–Vis DRS analysis, resulting in a band gap value of 2.93 eV, notably lower than a typical value of 3.2 eV associated with anatase. The photocatalyst sample with Pt deposited via a photo-assisted deposition method (Pt-TNTA-PDC) evidently outperformed its bare TNTA counterpart in producing hydrogen by 4.7 times, while that with Pt deposited by chemical reduction could improve H2 production by 3.8 times. During photocatalytic operations, glycerol served an important purpose in suppressing electron-hole recombination by providing holes an oxidative target which is less energy-demanding than water. It is proposed that glycerol underwent dehydrogenation and decarbonylation processes producing ethylene glycol, followed by dehydration and oxidation towards acetic acid, before transforming into H2 and CO2, eventually. We suggest that Pt plays a role not only in the enhancement of H2 photoproduction, but also in governing the direction of reactions, hence the intermediates and final products. 相似文献
4.
Photocatalytic oxidation of iodide ions and hydrogen evolution proceeded on Pt-loaded titanium dioxide particles in aqueous solutions. The reaction rate levelled off as the concentration of tri-iodide ions increased. This was due to the reduction of tri-iodide ion into iodide ion on the photocatalyst. This process is the back reaction of the energy storing photocatalytic reaction. By introducing an oil phase on the aqueous solution the back reaction was retarded, because part of the tri-iodide ions were transported to the oil phase. The back reaction was much eliminated when durohydroquinone was added to the oil phase. In this case, tri-iodide ions in aqueous solution was scavenged as the result of the redox reaction between tri-iodide ion and durohydroquinone, leading to the prevention of the back reaction. This system is comparable to the functions of photosystem I and plastoquinone in the thylakoid membrane of green plants. 相似文献
5.
In this study, TiO2 photocatalysts with nickel sulfide cocatalyst are prepared by loading nickel sulfide on TiO2 with solvothermal synthesis approach. The materials were prepared by glycol solvothermal method using anatase, nickel nitrate, thiourea as precursor. The prepared catalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), ultraviolet–visible diffuse reflectance spectroscopy (UV–vis DRS), and X-ray photoelectron spectroscopy (XPS). This is the first time to report that NiS is used as a cocatalyst with TiO2 for the photocatalytic production of H2. The results revealed that the structure and the amount of the cocatalyst loaded on TiO2 play important roles in the photocatalytic activity of NiS/TiO2 composite. The maximum evolution of H2 was obtained when NiS had hexagonal structure with content in the composite of 7 at% in relation to TiO2. The rate of H2 evolution was increased up to about 30 times than that of TiO2 alone. 相似文献
6.
《International Journal of Hydrogen Energy》2020,45(58):33543-33551
Ni/porous g-C3N4 was prepared by high temperature thermal polymerization process using carbon dots as soft template and photodeposition. With nickel nanoparticles supported as co-catalyst, the hydrogen evolution reaction (HER) activity of the photocatalyst has been significantly enhanced under visible light, which is up to 1273.58 μmol g−1 h−1, superior to pristine g-C3N4 (4.12 μmol g−1 h−1). This is attributed to the inhibited recombination of photogenerated electron-hole pairs and the much better electron transport efficiency. The formed porous structure of carbon nitride could facilitate light utilization and together with nickel nanoparticles, better charge separation can be realized which are proved by the photoluminescence, time-resolved photoluminescence spectra, transient photocurrent measurements and electrochemical impendence spectroscopy. This work provides a useful route to obtain less expensive and efficient photocatalyst containing no noble metals for hydrogen production. 相似文献
7.
Hafeez Yusuf Hafeez Sandeep Kumar Lakhera Sankeerthana Bellamkonda G. Ranga Rao M.V. Shankar D.W. Bahnemann Bernaurdshaw Neppolian 《International Journal of Hydrogen Energy》2018,43(8):3892-3904
Reduced graphene oxide (rGO) supported g-C3N4-TiO2 ternary hybrid layered photocatalyst was prepared via ultrasound assisted simple wet impregnation method with different mass ratios of g-C3N4 to TiO2. The synthesized composite was investigated by various characterization techniques, such as XRD, FTIR, Raman Spectra, FE-SEM, HR-TEM, UV vis DRS Spectra, XPS Spectra and PL Spectra. The optical band gap of g-C3N4-TiO2/rGO nanocomposite was found to be red shifted to 2.56 eV from 2.70 eV for bare g-C3N4. It was found that g-C3N4 and TiO2 in a mass ratio of 70:30 in the g-C3N4-TiO2/rGO nanocomposite, exhibits the highest hydrogen production activity of 23,143 μmol g?1h?1 through photocatalytic water splitting. The observed hydrogen production rate from glycerol-water mixture using g-C3N4-TiO2/rGO was found to be 78 and 2.5 times higher than g-C3N4 (296 μmol g?1 h?1) and TiO2 (11,954 μmol g?1 h?1), respectively. A direct contact between TiO2 and rGO in the g-C3N4-TiO2/rGO nanocomposite produces an additional 10,500 μmol g?1h?1 of hydrogen in 4 h of photocatalytic reaction than the direct contact between g-C3N4 and rGO. The enhanced photocatalytic hydrogen production activity of the resultant nanocomposite can be ascribed to the increased visible light absorption and an effective separation of photogenerated electron-hole pairs at the interface of g-C3N4-TiO2/rGO nanocomposite. The effective separation and transportation of photogenerated charge carriers in the presence of rGO sheet was further confirmed by a significant quenching of photoluminescence intensity of the g-C3N4-TiO2/rGO nanocomposite. The photocatalytic hydrogen production rate reported in this work is significantly higher than the previously reported work on g-C3N4 and TiO2 based photocatalysts. 相似文献
8.
Juan Corredor Maria J. Rivero Inmaculada Ortiz 《International Journal of Hydrogen Energy》2021,46(33):17500-17506
The viability of the photocatalytic hydrogen production is closely related to the performance and long term stability of the photocatalyst. In this work rGO/TiO2 composites have been synthetized with graphene oxide (GO) ratios from 1% to 10% and experimentally assessed towards hydrogen generation from methanol solutions. The performance of the composite with 2% of rGO (2 GT) has been compared to bare TiO2 working with 20% volume methanol solution. The hydrogen production initial rate showed similar values with both photocatalysts decreasing after about 24 h. Further analysis of the photocatalytic process at longer times showed the negative influence of hydrogen accumulation in the reaction system. Thus, an experimental procedure with argon purge was developed and the behavior of TiO2 and 2 GT photocatalysts was compared. It is concluded that TiO2 keeps its activity after 8 operation cycles while 2 GT performance reduces progressively. This can be attributed to the further reduction of GO and the increase of defects in its structure. 相似文献
9.
《International Journal of Hydrogen Energy》2020,45(45):24037-24044
Pt is the most commonly used electrode and catalyst materials for H2 production via water splitting as it provides the highest Gibbs free energy of H2 adsorption (ΔGH) an d overpotential. However, as Pt catalysts are expensive and difficult to mass-produce, several efforts have been made to identify suitable substitutes. Although Cu provides lower ΔGH and overpotential than Pt, it exhibits better catalytic performance than other catalysts and is suitable for H2 production. However, corrosion of Cu may affect its stability of Cu electrode. To overcome this limitation, we have coated a layer of carbon on the copper electrode and then synthesized titanium dioxide-(TiO2-) on the C/Cu electrode for water splitting application. Carbon black (CB) has excellent electrical conductivity and stable resistance for effective working as an electrochemical catalyst, and TiO2 has diverse applications because of its low-cost, non-toxic, and corrosion-resistant characteristics. In this study, TiO2 was synthesized on C/Cu electrodes under UV irradiation for different durations. The optimum irradiation duration was determined to be 15 min via surface and electrochemical analyses. To identify the potential applications of this TiO2–C/Cu electrode, we used artificial wastewater as the electrolyte. The synthesized TiO2–C/Cu electrode exhibited better stability than C/Cu electrode. Further, H2 production with TiO2–C/Cu electrode was higher than that with C/Cu electrode at the same current density. We also investigated the effect of TiO2–C/Cu electrode on decomposition of formaldehyde. 相似文献
10.
G. Chehade M.E. Demir I. Dincer B. Yuzer H. Selcuk 《International Journal of Hydrogen Energy》2018,43(27):12049-12058
In this research paper, an experimental investigation of photoactive material titanium dioxide (TiO2) coated on 180 cm2 316 stainless steel anode is undertaken to study the photoresponse on photoelectrochemical (PEC) hydrogen production. The TiO2 nanoparticles are first prepared via sol-gel method. A large surface 316 stainless steel anode is coated with TiO2 nanoparticles by a dip coating apparatus at a withdraw rate of 2.5 mm/s. The nanoparticles are carried on the stainless steel substrate by two-step annealing procedure. The potentiostatic studies confirm the photoactivity of TiO2 nanoparticles in a photoelectrochemical reactor when exposed to solar ultraviolet (UV) light. The photon to current efficiency measurements carried out on the PEC reactor with TiO2 coated large surface stainless steel as photoanode demonstrate a significant increase of photoresponse in UV light compared to the uncoated stainless steel prepared under similar conditions. Upon illumination at a power density of 600 W/m2, the hydrogen production is observed in TiO2 coated stainless steel substrate at a measured rate of 51 ml/h while no illumination conditions show a production rate of 42 ml/h. In comparative assessments, the TiO2 coated substrate shows an increase in photocurrent of 10 mA with an energy efficiency of 1.32% and exergy efficiency of 3.42% at an applied potential of 1.6 V. The present results show a great potential for titanium nanoparticles semiconductor metal oxide in photoelectrochemical hydrogen production application. 相似文献
11.
《International Journal of Hydrogen Energy》2020,45(41):20851-20858
In this paper, Ag-based g-C3N4 composites have been successfully fabricated through two deferent synthetic methods: (i) a facile and efficient precipitation-calcination strategy (denoted as D–CN–xAg, x represents the dosage of Ag2CO3, the same below), (ii) a calcination method (denoted as Z–CN–xAg). All Ag-based g-C3N4 composites exhibit the enhanced photocatalytic activities under visible-light irradiation. Moreover, the optimal dosage of Ag2CO3 in the D–CN–xAg composite is found to be 5%, the corresponding hydrogen production capacity is 153.33 μmol g−1 h−1, which is 4.6 times higher than that of Z–CN–5%Ag composite. This might be attributed to appropriate content of metallic Ag and more active sites exposed on the surface of D–CN–5%Ag composite. Meanwhile, combining with photoelectrochemical results, it could be inferred that LSPR effect and the intimate interfacial between metallic Ag and g-C3N4 in the system play also important role for the improvement of photocatalytic activity. These results demonstrate that the appropriate loading of metallic Ag originated from Ag2CO3 into g-C3N4 could accelerate the separation and transfer of photogenerated electron-hole pairs, leading to the improvement of photocatalytic activity for hydrogen production from water splitting. Finally, a possible photocatalytic mechanism is proposed. 相似文献
12.
《International Journal of Hydrogen Energy》2019,44(59):30917-30926
Catalysts are crucial to promote the technical feasibility of supercritical water gasification (SCWG) for H2 production from wet biomass, yet catalysts prepared by conventional methods normally encounter sintering problems in supercritical water. Herein, a series of ZrO2-supported Ni catalysts were tried to be prepared by supercritical water synthesis (SCWS) and evaluated for SCWG in terms of activity and property stability. The SCWS was conducted at 500 °C and 23 MPa using metal nitrates as starting materials. Effect of precursor concentration on property and catalytic performance of the SCWS-prepared catalysts for SCWG of 20 wt% glycerol were systematically studied. XRD, SEM-EDS, TEM and TGA were applied for catalyst characterization. Results verified the successful obtaining of Ni/ZrO2 nanocatalysts with Ni crystals of 30–70 nm and ZrO2 crystals of ~11 nm by the SCWS process, which were found to be active on the WGSR for SCWG to increase the H2 yield as high as 155%. Importantly, the SCWS-prepared Ni/ZrO2 catalysts exhibited excellent property stability and anti-coking ability for SCWG of glycerol. 相似文献
13.
Xue Zhang Zhiwei Cheng Puhui Deng Linping Zhang Yu Hou 《International Journal of Hydrogen Energy》2021,46(29):15389-15397
A designed type-II heterojunction photocatalyst, NiSe2/Cd0.5Zn0.5S (NiSe2/CZS), was successfully synthesized and it exhibits outstanding photocatalytic hydrogen evolution performance. The optimal loading amount of NiSe2 on Cd0.5Zn0.5S is 13 wt %, and the corresponding hydrogen production rate is approximately 121.01 mmol g?1 h?1 under visible light. The heterojunction structure between Cd0.5Zn0.5S and NiSe2 promoted the separation of photogenerated electron-hole pairs, effectively suppressed the photogenerated carrier recombination and endowed the material with excellent interfacial charge transfer properties, thus improving the photocatalytic performance. 相似文献
14.
R. Camposeco M. Hinojosa-Reyes R. Zanella 《International Journal of Hydrogen Energy》2021,46(51):26074-26086
Cu/TiO2 was modified by adding Rh as co-catalyst and used as a highly efficient photocatalyst for the hydrogen evolution reaction. A low amount of Rh was loaded onto Cu/TiO2 by the deposition-precipitation with urea (DPU) method to observe the effect on the hydrogen production displayed by different samples. The Rh–Cu/TiO2 oxide structure exhibited a remarkably high photocatalytic hydrogen evolution performance, which was about twofold higher than that of the Cu/TiO2 monometallic photocatalyst. This outstanding performance was due to the efficient charge carrier transfer as well as to the delayed electron-hole recombination rate caused by the addition of Rh. The influence of the different parameters of the photocatalyst synthesis and reaction conditions on the photocatalytic activity was investigated in detail. Hydrogen evolution was studied using methanol, ethanol, 2-propanol and butanol as scavengers with an alcohol:water ratio of 20:80. The methanol-water system, which showed the highest hydrogen production, was studied under 254, 365 and 450 nm irradiation; Rh–Cu/TiO2 showed high photocatalytic activity with H2 production rates of 9260, 5500, and 1940 μmol h?1 g?1, respectively. The Cu–Rh/TiO2 photocatalyst was active under visible light irritation due to its strong light absorption in the visible region, low band gap value and ability to reduce the electron (e?) and hole (h+) recombination. 相似文献
15.
Xu Qingli Zhang Zhengdong Huang Kai Xin Shanzhi Mao Chuang Chen Chenge Yang Huan Yue Yang Yan Yongjie 《International Journal of Hydrogen Energy》2021,46(54):27380-27393
A series of Mg-modified Ni/Attapulgite (ATP) catalysts have been prepared by impregnation method for glycerol steam reforming to produce hydrogen. The physicochemical properties of catalysts were characterized using various techniques including N2 physical adsorption analysis, XRD, H2-TPR, SEM, TEM and NH3-TPD. The results of N2 physical adsorption indicated MgO modified Ni-based catalysts had unique mesostructure, resulting in the high metal dispersion and interaction between active metal and support as proven by XRD, TEM and H2-TPR. Results of glycerin reforming experiments showed that Ni/10MgO/ATP catalyst had the highest activity than that of the other catalysts. Ni/10MgO/ATP catalyst had the smallest Ni average crystal size (10.1 nm) and the highest surface area (110.31 m2/g). These excellent properties made it show the enhanced glycerol conversion (94.71%) and a higher H2 yield (88.45%) and the longest stability (30 h) during glycerol steam reforming (GSR) at 600 °C, W/G = 3, and WHSV = 1 h?1. The used catalysts after 60 h of glycerin reforming experiments were also investigated by XRD, SEM, TEM, Roman and TG-DTG. The results indicated that the addition of Mg significantly inhibited the sintering of nickel grains and the formation of amorphous carbon. Therefore, Ni/10MgO/ATP catalyst increased the activity of the catalyst and extended the life of the catalyst. 相似文献
16.
Haipei Liu Kai ZhangDengwei Jing Guanjie LiuLiejin Guo 《International Journal of Hydrogen Energy》2010
In this paper a novel SrS/CdS composite powders were prepared by coprecipitation method. The physicochemical properties of the photocatalysts were analyzed by XRD, UV–Vis, BET, PL and SEM. Photocatalytic hydrogen production results showed that these composite powders can work efficiently under visible light without loading noble metal, and it was found that the ratio of SrS/CdS equaling to 2/8 has the best performance among various SrS/CdS composite powders, and the hydrogen evolution rate amounted to 123 μmol/h under visible light irradiation. The apparent quantum yield for this photocalyst was calculated to be 2.85%, 4.59%, 9.63% at 420 nm, 440 nm and 480 nm respectively, and the apparent quantum yield under visible light was 5.83%. The reason for its high activity was analyzed. 相似文献
17.
《International Journal of Hydrogen Energy》2020,45(15):8223-8233
The Ni catalyst supported on CaO-modified attapulgite (CaO-ATP) were synthesized by wet impregnation method at a constant Ni metal loading (10 wt%). The catalyst was tested by carrying out a glycerin steam reforming reaction under the following conditions: 400–800 °C, W/G is 3, GHSV is 1 h−1. Ni–CaO-ATP exhibited the highest hydrogen yield (85.30%) and glycerol conversion (93.71%) at 600 °C. The catalysts were characterized by N2 adsorption/desorption, BET, XRD, H2-TPR, TG and SEM. The results show that ATP has good resistance to carbon deposition. As an attapulgite modifier of Ni–CaO-ATP, CaO promotes the dispersion of the active component nickel species, which would promote the water gas shift reaction, leading to the improving of hydrogen yield. In addition, the addition of Ca would further enhance the inhibition of carbon deposition and prolong the life of the Ni–CaO-ATP catalyst. 相似文献
18.
《International Journal of Hydrogen Energy》2020,45(13):7584-7615
Hydrogen is the prime source of energy with enormous attention in the current research development process as it is safe, clean, eco-friendly, and can be produced from renewable resources through simple catalytic reactions. Scalable production of hydrogen through photocatalysis has been achieved using carbon-modified semiconductors since 2009. In this direction, this review delivers comprehensive understandings into the interface and structural interactions between TiO2 and carbonaceous materials such as carbon, carbon nanotubes, graphene, activated carbon, graphitic carbon nitride, carbon quantum dots, etc., and their influences toward improving the hydrogen generation activity of these systems. Besides, recently developed carbonaceous materials such as 3-D graphene, carbon nanohorns, and carbon nanocones have also been discussed on their character in the photocatalytic water splitting procedure. In general, the observed improvements in this carbon-modified TiO2 attributed to the synergetic effects, which offer the active migration of charge carriers and reduced recombination rates in the photocatalyst. Finally, highlighting the future perspectives of the carbonaceous materials in photocatalytic applications are concluded. 相似文献
19.
《International Journal of Hydrogen Energy》2022,47(13):8247-8260
This study demonstrates a high-performance visible-light-driven photocatalyst for water splitting H2 production. CdS nanorods (30 nm in diameters) with shorter radial transfer paths and fewer defects were prepared by a solvothermal method. To mitigate the recombination of electrons and holes, MoS2 nanosheets with rich active sites were modified on the surface of CdS nanorods by a room-temperature sonication treatment. The photocatalytic water splitting tests show that the MoS2/CdS nanocomposites exhibit excellent H2 evolution rates. The highest H2 evolution rates (63.71 and 71.24 mmol g?1h?1 in visible light and simulated solar light irradiation) was found at the 6% MoS2/CdS nanocomposites, which was 14.61 times and 13.39 times higher than those of the corresponding pristine CdS nanorods in visible light and simulate solar light irradiation, respectively. The apparent quantum efficiency (AQE) of the 6% MoS2/CdS nanocomposites at 420 nm was calculated to be 33.62%. The electrochemistry tests reveal that the enhanced photocatalytic activity is a result of extra photogenerated charge carries, greatly enhanced charge separation and transfer ability of the MoS2/CdS composites. This study may give new insights for the rational design and facile synthesis of high-performance and cost-effective bimetallic sulfide photocatalysts for solar-hydrogen energy conversion. 相似文献
20.
《International Journal of Hydrogen Energy》2020,45(46):24765-24778
The preparation of a triptych nanomaterial made of TiO2 nanoparticles as semiconductor, Ag plasmonic nanoparticles and a carbo-benzene macrocyclic molecule as photosensitizer is described, and used to produce hydrogen by photo-reduction of pure deionized water under 2.2 bar argon pressure without any electrical input. Silver nanoparticles (~5 nm) are grafted onto the surface of commercial TiO2 nanoparticles (~23 nm) by a photo-deposition process using an original silver amidinate precursor. The thickness of the photosensitive layer (2 nm), which completes the assembly, plays a crucial role in the efficiency and robustness of the triptych nanocatalyst. Thanks to the organic layer reorganization during the first ~24 h of irradiation, it leads to an enhancement of the hydrogen production rate up to 5 times. The amount of silver and carbo-benzene are optimized, along with the mass concentration of nanocatalyst in water and the pH of the aqueous medium, to allow reaching a hydrogen production rate of 22.1 μmol·h−1·gphotocatalyst−1. 相似文献