首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Along with a brief overview of literature data on energy storage technologies utilising hydrogen and metal hydrides, this article presents results of the related R&D activities carried out by the authors. The focus is put on proper selection of metal hydride materials on the basis of AB5- and AB2-type intermetallic compounds for hydrogen storage and compression applications, based on the analysis of PCT properties of the materials in systems with H2 gas. The article also presents features of integrated energy storage systems utilising metal hydride hydrogen storage and compression, as well as their metal hydride based components developed at IPCP and HySA Systems.  相似文献   

2.
Metal hydrides can store hydrogen at low pressures and with high volumetric capacity. For the possible application as storage medium in hydrogen stand-alone power systems, large metal hydride hydrogen storage units are usually required. A reliable and verified kinetic correlation is an important tool in the designing process of a larger storage unit. This paper describes kinetic investigation of a AB5-type alloy and its corresponding hydride, with the purpose of finding a semi-empirical correlation suitable for use in heat and mass transfer modelling and engineering design of metal hydride storage units.  相似文献   

3.
Hydrogen compressors dominate the hydrogen refueling station costs. Metal hydride based thermally driven hydrogen compressor (MHHC) is a promising technology for the compression of hydrogen. Selection of metal hydride alloys and reactor design have a great impact on the performance of the thermally driven MHHC. A thermal model is developed to study the performance characteristics of the two-stage MHHC at different operating conditions. The effects of heat source temperature and hydrogen supply pressure on the compression ratio and isentropic efficiency are investigated. Finite volume method is used for discretizing the reaction kinetics, continuity, momentum and energy equations. Metal hydrides selected for this analysis are Mm0.2La0.6Ca0.2Ni5 and Ti1.1Cr1.5Mn0.4V0.1. The thermal model was validated with the results extracted from an experimental study. Validation results demonstrated that the numerical results are in good agreement with the data reported in literature.  相似文献   

4.
Hydrogen storage using the metal hydrides and complex hydrides is the most convenient method because it is safe, enables high hydrogen capacity and requires optimum operating condition. Metal hydrides and complex hydrides offer high gravimetric capacity that allows storage of large amounts of hydrogen. However, the high operating temperature and low reversibility hindered the practical implementation of the metal hydrides and complex hydrides. An approach of combining two or more hydrides, which are called reactive hydride composites (RHCs), was introduced to improve the performance of the metal hydrides and complex hydrides. The RHC system approach has significantly enhanced the hydrogen storage performance of the metal hydrides and complex hydrides by modifying the thermodynamics of the composite system through the metathesis reaction that occurred between the hydrides, hence enhancing the kinetic and reversibility performance of the composite system. In this paper, the overview of the RHC system was presented in detail. The challenges and perspectives of the RHC system are also discussed. This is the first review report on the RHC system for solid-state hydrogen storage.  相似文献   

5.
Metal hydride (MH) thermal sorption compression is an efficient and reliable method allowing a conversion of energy from heat into a compressed hydrogen gas. The most important component of such a thermal engine – the metal hydride material itself – should possess several material features in order to achieve an efficient performance in the hydrogen compression. Apart from the hydrogen storage characteristics important for every solid H storage material (e.g. gravimetric and volumetric efficiency of H storage, hydrogen sorption kinetics and effective thermal conductivity), the thermodynamics of the metal–hydrogen systems is of primary importance resulting in a temperature dependence of the absorption/desorption pressures). Several specific features should be optimised to govern the performance of the MH-compressors including synchronisation of the pressure plateaus for multi-stage compressors, reduction of slope of the isotherms and hysteresis, increase of cycling stability and life time, together with challenges in system design associated with volume expansion of the metal matrix during the hydrogenation.  相似文献   

6.
To find a solution to efficiently exploit renewable energy sources is a key step to achieve complete independence from fossil fuel energy sources. Hydrogen is considered by many as a suitable energy vector for efficiently exploiting intermittent and unevenly distributed renewable energy sources. However, although the production of hydrogen from renewable energy sources is technically feasible, the storage of large quantities of hydrogen is challenging. Comparing to conventional compressed and cryogenic hydrogen storage, the solid-state storage of hydrogen shows many advantages in terms of safety and volumetric energy density. Among the materials available to store hydrogen, metal hydrides and complex metal hydrides have been extensively investigated due to their appealing hydrogen storage properties. Among several potentials candidates, magnesium hydride (MgH2) and lithium borohydride (LiBH4) have been widely recognized as promising solid-state hydrogen storage materials. However, before considering these hydrides ready for real-scale applications, the issue of their high thermodynamic stability and of their poor hydrogenation/dehydrogenation kinetics must be solved. An approach to modify the hydrogen storage properties of these hydrides is nanoconfinement. This review summarizes and discusses recent findings on the use of porous scaffolds as nanostructured tools for improving the thermodynamics and kinetics of MgH2 and LiBH4.  相似文献   

7.
Renewable energy sources such as wind turbines and solar photovoltaic are energy sources that cannot generate continuous electric power. The seasonal storage of solar or wind energy in the form of hydrogen can provide the basis for a completely renewable energy system. In this way, water electrolysis is a convenient method for converting electrical energy into a chemical form. The power required for hydrogen generation can be supplied through a photovoltaic array. Hydrogen can be stored as metal hydrides and can be converted back into electricity using a fuel cell. The elements of these systems, i.e. the photovoltaic array, electrolyzer, fuel cell and hydrogen storage system in the form of metal hydrides, need a control and monitoring system for optimal operation. This work has been performed within a Research and Development contract on Hydrogen Production granted by Solar Iniciativas Tecnológicas, S.L. (SITEC), to the Politechnic University of Valencia and to the AIJU, and deals with the development of a system to control and monitor the operation parameters of an electrolyzer and a metal hydride storage system that allow to get a continuous production of hydrogen.  相似文献   

8.
Hydrogen/methane mixtures draw attention due to the idea of the injection of hydrogen into natural gas networks and biological production of biohythane by one- and two-step anaerobic fermentation/digestion methods. It is hard to extract hydrogen from dilute mixtures with methane by traditional separation processes, since hydrogen is the minor component with low partial pressure. Metal hydrides selectively absorb hydrogen and offer an opportunity to overcome the limitations of traditional separation methods. In the present paper, we present experimental results on the separation of a dilute mixture of hydrogen (10%) with methane in a flow-through metal hydride reactor with inlet mixture pressure of 0.95 MPa by the LaNi4.8Mn0.3Fe0.1 intermetallic compound. Hydrogen was separated in one step with roundtrip (absorption/desorption) recovery of 74%. An exergetic analysis of the metal hydride separation of a binary mixture containing hydrogen was implemented and equations for hydrogen recovery and exergy efficiency of separation are obtained. Thermodynamic analysis shows that the exergy efficiency of the metal hydride purification has a clear maximum at hydrogen concentrations around 5–20%. The advantage of metal hydride purification is the absorption of the minor fraction from the feed, thus it is preferable for dilute mixtures and could be feasible for practical applications. With the use of low potential or waste heat to drive the reaction, it is possible to increase the efficiency of hydrogen purification by metal hydrides. The maximum exergy efficiency is 61% for 0.8 MPa outlet pressure, taking into account the quality of involved heat flows.  相似文献   

9.
The goal of the EU Horizon 2020 RISE project 778307 “Hydrogen fuelled utility vehicles and their support systems utilising metal hydrides” (HYDRIDE4MOBILITY), is in addressing critical issues towards a commercial implementation of hydrogen powered forklifts using metal hydride (MH) based hydrogen storage and PEM fuel cells, together with the systems for their refuelling at industrial customers facilities. For these applications, high specific weight of the metallic hydrides has an added value, as it allows counterbalancing of a vehicle with no extra cost. Improving the rates of H2 charge/discharge in MH on the materials and system level, simplification of the design and reducing the system cost, together with improvement of the efficiency of system “MH store-FC”, is in the focus of this work as a joint effort of consortium uniting academic teams and industrial partners from two EU and associated countries Member States (Norway, Germany, Croatia), and two partner countries (South Africa and Indonesia).The work within the project is focused on the validation of various efficient and cost-competitive solutions including (i) advanced MH materials for hydrogen storage and compression, (ii) advanced MH containers characterised by improved charge-discharge dynamic performance and ability to be mass produced, (iii) integrated hydrogen storage and compression/refuelling systems which are developed and tested together with PEM fuel cells during the collaborative efforts of the consortium.This article gives an overview of HYDRIDE4MOBILITY project focused on the results generated during its first phase (2017–2019).  相似文献   

10.
Hydrogen energy proved the remarkable benefits from the perspective of future energy needs and environmental concerns. However, the existing challenges in hydrogen energy technologies, mainly hydrogen storage need to be overcome. In hydrogen storage systems, metal hydrides are highly suffered by the protic species and oxygen because of their reactivity in ambient conditions, leading to surface contamination and affecting the hydrogen sorption behaviors. Moreover, the hydrogen storage in metal hydrides can be hindered by impurities such as CO and CO2 in hydrogen gas. The new concepts of hydrides with polymers are vital for overcoming the hydrides’ contamination-related issues. This comprehensive review spotlight primarily on the alternative ways to avoid the contamination of hydrides with polymers. The researchers worldwide developed different concepts of polymer-hydrides (intermetallic and complex hydrides) systems, mainly composites and polymer encapsulation methods, to avoid contamination from the air/moisture/gas impurities and improve hydrogen sorption properties in hydrides. Interestingly, selective gas properties of polymers with hydrides show tremendous advantages because of their selective permeability of hydrogen, which influences the easier path for hydrogen diffusion to form the hydrides through the polymer matrix and prohibit the contamination of hydride materials from the other gases/protic species. Notably, this review bridges the understanding between the polymers and hydrides (intermetallic, complex and reactive hydride composite) for hydrogen storage systems.  相似文献   

11.
Hydrogen storage in metal hydrides presents distinct challenges which encourage the study of effective heat management strategies. Hydrogen absorption in metal hydrides is an exothermic reaction, consequently the generated heat must be removed effectively to achieve the desired performance. This work presents a mathematical model describing the adsorption of hydrogen in La Ni4.7Co0.3 metal hydride as a storage material. Heat and mass transfer effects are modeled in detail. The effect of heat transfer coefficient is also estimated. Besides, a heat transfer fluid for cooling is incorporated to the model. The problem is mathematically formulated presenting a numerical simulation of a design of a cylindrical tank for hydrogen storage. The alloy is studied by using pressure-composition-temperature curves which are carried out at different temperatures. Thermodynamic parameters and hydrogen storage capacity are determined. For isotherm's kinetics, the Jonhson-Mehl-Avrami-Kolomogorov model is used, from which the kinetic constant of the hydriding process is determined.  相似文献   

12.
The current energy transition imposes a rapid implementation of energy storage systems with high energy density and eminent regeneration and cycling efficiency. Metal hydrides are potential candidates for generalized energy storage, when coupled with fuel cell units and/or batteries. An overview of ongoing research is reported and discussed in this review work on the light of application as hydrogen and heat storage matrices, as well as thin films for hydrogen optical sensors. These include a selection of single-metal hydrides, Ti–V(Fe) based intermetallics, multi-principal element alloys (high-entropy alloys), and a series of novel synthetically accessible metal borohydrides. Metal hydride materials can be as well of important usefulness for MH-based electrodes with high capacity (e.g. MgH2 ~ 2000 mA h g−1) and solid-state electrolytes displaying high ionic conductivity suitable, respectively, for Li-ion and Li/Mg battery technologies. To boost further research and development directions some characterization techniques dedicated to the study of M-H interactions, their equilibrium reactions, and additional quantification of hydrogen concentration in thin film and bulk hydrides are briefly discussed.  相似文献   

13.
Metal hydrides have become more and more significant both as hydrogen storage devices and as basic elements in energy conversion systems. Besides the well-known rare earth hydrides, magnesium alloys are very promising in the field of thermal energy storage for concentrating solar power plants. There is interest in analysing the performances of such materials in this context; for this purpose, a numerical model to describe hydrogen absorption and desorption processes of a metal hydride has been connected to a model elaborated with the help of Cycle-Tempo software to simulate a CSP plant operation. The integration of this plant with four metal hydride systems, based on the combination of two low-temperature hydrides (LaNi5, LaNi4.8Al0.2) and two high-temperature hydrides (Mg, Mg2Ni) has been studied. The investigation has taken into account CSP overall performances, transfer surfaces and storage efficiencies, to determine the feasibility of designed plants. Results show that the selection of the optimal hydrides must take into account hydride operation temperatures, reaction enthalpies, storage capacities and kinetic compatibility. In the light of the calculated parameters, a solar ORC plant using R134a as the working fluid is a valuable choice if matched to a storage system composed of LaNi5 and Mg2Ni hydrides.  相似文献   

14.
Hydrogen-based economy has a great potential for addressing the world's environmental concerns by using hydrogen as its future energy carrier. Hydrogen can be stored in gaseous, liquid and solid-state form, but among all solid-state hydrogen storage materials (metal hydrides) have the highest energy density. However, hydrogen accessibility is a challenging step in metal hydride-based materials. To improve the hydrogen storage kinetics, effects of functionalized catalysts/dopants on metal atoms have been extensively studied. The nanostructuring of metal hydrides is a new focus and has enhanced hydrogen storage properties by allowing higher surface area and thus reversibility, hydrogen storage density, faster and tunable kinetics, lower absorption and desorption temperatures, and durability. The effect of incorporating nanoparticles of carbon-based materials (graphene, C60, carbon nanotubes (CNTs), carbon black, and carbon aerogel) showed improved hydrogen storage characteristics of metal hydrides. In this critical review, the effects of various carbon-based materials, catalysts, and dopants are summarized in terms of hydrogen-storage capacity and kinetics. This review also highlights the effects of carbon nanomaterials on metal hydrides along with advanced synthesis routes, and analysis techniques to explore the effects of encapsulated metal hydrides and carbon particles. In addition, effects of carbon composites in polymeric composites for improved hydrogen storage properties in solid-state forms, and new characterization techniques are also discussed. As is known, the nanomaterials have extremely higher surface area (100–1000 time more surface area in m2/g) when compared to the bulk scale materials; thus, hydrogen absorption and desorption can be tuned in nanoscale structures for various industrial applications. The nanoscale tailoring of metal hydrides with carbon materials is a promising strategy for the next generation of solid-state hydrogen storage systems for different industries.  相似文献   

15.
16.
A long-term (15-year) Hydrogen and Fuel Cell Technologies (HFCT) Research, Development, and Innovation (RDI) strategy was officially launched in September 2008 by the Department of Science and Technology (DST) in South Africa. The Hydrogen South Africa (HySA) programme is based upon the beneficiation of the country's large Platinum Group Metal (PGM) resources. HySA comprises of three Centres of Competence: HySA Catalysis, HySA Infrastructure and HySA Systems. HySA Systems, a Systems Integration and Technology Validation Competence Centre on HFCT was established in 2007 at the South African Institute for Advanced Materials Chemistry (SAIAMC) at the University of the Western Cape (UWC). The main objective with HySA Systems is to (i) develop Hydrogen and Fuel Cell systems, demonstrators, prototypes and products, (ii) perform technology validation and system integration and (iii) focus on system oriented material R&D in two key HySA-programmes: (1) Combined Heat and Power (CHP) and (2) Hydrogen Fuelled Vehicles (HFV). HySA Systems is also responsible for the development, prototyping, testing and commissioning of the following key technologies: High Temperature (HT) Membrane Electrode Assemblies (MEAs), HT-Proton Exchange Membrane (PEM) fuel cells, metal hydrides for hydrogen storage and compression systems, hydrogen fuel cell/battery power modules, palladium membranes, and lithium-ion batteries. HySA Systems has successfully: a) implemented some pilot plant manufacturing facilities/capabilities for HFC components and systems in South Africa, b) been partnering with key international HFC and local industries, c) established a local Supply Chain of SMMEs, d) set up industrial/commercial agreements with national/international HFC players, e) been disseminating their findings/work in High Impact Factor Journals and National/International Conferences, and f) innovated and thus generated Intellectual Property in key HFC technologies.  相似文献   

17.
Numerical simulation of a hydrogen storage tank of a Totalized Hydrogen Energy Utilization System (THEUS) for application to commercial buildings was done to verify the practicality of THEUS. THEUS consists of a fuel cell, water electrolyzer, hydrogen storage tank and their auxiliary machinery. The hydrogen storage tanks with metal hydrides for load leveling have been previously experimentally investigated as an important element of THEUS. A hydrogen storage tank with 50 kg AB5 type metal hydride was assembled to investigate the hydrogen-absorbing/desorbing process, which is exothermic/endothermic process. The goal of this tank is to recover the cold heat of the endothermic process for air conditioning, and thus improve the efficiency of THEUS. To verify the practical effectiveness of this improved system, we developed a numerical simulation code of hydrogen storage tank with metal hydride. The code was validated by comparing its results with experimental results. In this code the specific heat value of the upper and lower flanges of the hydrogen storage tank was adjusted to be equal to the thermal capacity of the entire tank. The simulation results reproduce well the experimental results.  相似文献   

18.
Metal hydrides are regarded as one of the most attractive options for thermal energy storage (TES) materials for concentrated solar thermal applications. Improved thermal performance of such systems is vitally determined by the effectiveness of heat exchange between the metal hydride and the heat transfer fluid (HTF). This paper presents a numerical study supported by experimental validation on a magnesium hydride reactor fitted with a helical coil heat exchanger for enhanced thermal performance. The model incorporates hydrogen absorption kinetics of ball-milled magnesium hydride, with titanium boride and expanded natural graphite additives obtained by Sievert's apparatus measurements and considers thermal diffusion within the reactor to the heat transfer fluid for a realistic representation of its operation. A detailed parametric analysis is carried out, and the outcomes are discussed, examining the ramifications of hydrogen supply pressure and its flow rate. The study identifies that the enhancement of thermal conductivity in magnesium hydride has an insignificant impact on current reactor performance.  相似文献   

19.
Metal hydrides are considered as promising candidates for hydrogen storage as they exhibit higher energy densities than compressed gas storage storages. This study represents a theoretical thermodynamic analysis of metal hydride‐based hydrogen storage systems, focusing mainly on the energy demand to operate the storage system and the resulting efficiency. The main energy demand occurs during hydrogen release. This energy demand is composed of three contributions: the heat required to heat the hydride up to desorption temperature, the heat of reaction and the work of compression to reach the targeted outlet pressure. A sensitivity analysis was performed to demonstrate the impact of several parameters, for example, heat of reaction and hydrogen uptake on the energy balance. The most influential parameter is the heat of reaction. The hydrogen uptake does not have a noticeable influence as long as it is not too low. Several possibilities to improve the efficiency of the storage system are discussed (heat integration and the application of a heat storage system). Heat integration can significantly improve the overall efficiency, whereas the application of a heat storage system does not seem realistic. Compared with other hydrogen storage technologies, metal hydrides can feature higher efficiencies than low‐temperature hydrogen storage concepts, for example, liquefied or cryo‐adsorbed hydrogen. The efficiencies of a metal hydride storage system are similar to those reached with a system based on liquid organic hydrogen carriers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
The clean and environmentally friendly energy demand increases rapidly over the years. Hydrogen has been recognised as one of the best options to satisfy this demand. Utilisation of hydrogen as an energy carrier requires a number of steps especially for on-board applications, namely, production, transportation and storage. Storage of hydrogen brings a great challenge for the researchers among others. Current technologies include high-pressure compression, liquefaction and solid state storage of hydrogen. Solid state storage of hydrogen seems to be more applicable due to being much safer and denser. Metal hydrides are accepted as good candidates for solid state storage of hydrogen. In this regard, this study focuses on revealing dynamical and mechanical properties of new hydrogen reservoirs with high gravimetric hydrogen density, Li-X-H (X = C, N) using first principle calculations. First principle calculations have been proven to be a great tool to reveal extensive physical and chemical properties of the materials as well as mechanical and dynamical stability without synthesising them. Thus, this study adopts this tool to compute several physical and thermodynamic properties of Li-X-H such as bulk modulus, Young Modules, Shear Modulus, elastic constants, Poisson's ratio, Debye Temperature and so on for the first time. Based on the mechanical stability evaluation of compounds using elastic constants, both compounds are found to be mechanically stable. In addition, according to Pugh's criteria, the compounds have ductile nature. The computation of anisotropy revealed that the compounds are anisotropic at all planes. Also, the specific heat capacities of compounds seem to reach to Dulong-Petit limit at high temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号