首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
CO2 methanation has attracted considerable interests as a promising approach to productively utilizing CO2 and reducing emissions to realize a low-carbon society. One major difficulty with packed bed reactors for catalyzed CO2 methanation is maintaining an optimal reactor temperature distribution. Although a high temperature increases the catalytic activity, it also leads to the formation of an inlet hotspot, which causes thermal runaway, unfavorable equilibrium products, and catalyst degradation. To address this, in this study, we proposed an approach to manage the temperature profile in CO2 methanation reactors by increasing catalytic activity along the reactor length using different Ni composition catalysts (gradient-distributed Ni-YSZ catalyst). Ni-based tubular catalysts with different Ni compositions were prepared and stacked in order of ascending Ni content from the inlet to the outlet. The effect of gradient Ni compositions on the temperature profile was investigated based on both numerical simulations and experimental observations. The gradient-distributed Ni catalyst could successfully prevent hotspot formation at the inlet of the reactor compared to the highly active uniform catalysts. The use of the catalyst caused a small difference in the reactor temperature (of ~70 °C) and afforded a high CH4 yield (~90%). The proposed approach using gradient-distributed catalysts could be a potential method to manage CO2 methanation reactor temperature and to achieve high CO2 conversion in compact reactors.  相似文献   

2.
Coupling CO2 desorption and methanation in the presence of hybrid materials offers a promising alternative to convert the CO2 in-situ removed during sorption-enhanced steam glycerol reforming (SESGR) avoiding the high energy-intensive CO2 sorbent regeneration. The all-inclusive integrated process exemplifies an option for glycerol valorization via consecutive SESGR and CO2 conversion by catalytic hydrogenation. The dual-function catalyst performing successively, in the same reactor, SESGR and CO2 desorption/conversion encompasses reforming/methanation catalyst (10%Ni5%Co) and dispersed nano-sized CaO on γ-Al2O3. Simultaneous CO2 desorption/conversion integrated process is explored in a fixed-bed reactor via an unsteady-state, two-scale, non-isothermal model, highlighting the impact of key parameters on the process performance. At large adsorbent/catalyst mass ratio (2.0) and high CaO conversion (0.5) in preceding SESGR, CO2 is released and hydrogenated for an extended period with extra hydrogen consumption, without a balance between CO2 desorption and CO2 hydrogenation rates. Increasing pressure (3.0 MPa) and gas velocity offers a match between these competitive reaction rates, resulting low CO2 concentration in the exit stream. Desorption/methanation thermal behavior controls the magnitude of CO2 low concentration period and the methanation efficiency.  相似文献   

3.
For the first time the influence of CO, CO2 and H2O content on the performance of chlorinated NiCeO2 catalyst in selective or preferential CO methanation was studied systematically. It was shown that the rate of CO methanation over Ni(Cl)/CeO2 increases with the increasing H2 concentration, is independent of CO2 concentration and decreases with increasing CO and H2O concentrations; the rate of CO2 methanation is weakly sensitive to H2 and CO2 concentrations and decreases with increasing CO and H2O concentrations. High catalyst selectivity was attributed to Ni surface blockage by strongly adsorbed CO molecules and ceria surface blockage by Cl, which both inhibit CO2 hydrogenation.For the first time, selective CO methanation over Ni(Cl)/CeO2 was studied for deep CO removal from formic acid derived hydrogen-rich gases characterized by high CO2 (40–50 vol%), low CO (30–1000 ppm) content and trace amounts of water. Composite Ni(Cl)/CeO2-η-Al2O3/FeCrAl wire mesh catalyst was demonstrated to be effective for this process at temperatures of 180–220°С, selectivity 30–70%, WHSV up to 200 L (STP)/(g∙h). The catalyst provides high process productivity, low pressure drop, uniform temperature distribution, and appears highly promising for the development of a compact CO cleanup reactor. Selective CO methanation was concluded to be a convenient way to CO-free hydrogen produced by formic acid decomposition.  相似文献   

4.
A chemical looping combustion process for coal using interconnected fluidized beds with inherent separation of CO2 is proposed in this paper. The configuration comprises a high velocity fluidized bed as an air reactor, a cyclone, and a spout-fluid bed as a fuel reactor. The high velocity fluidized bed is directly connected to the spout-fluid bed through the cyclone. Gas composition of both fuel reactor and air reactor, carbon content of fly ash in the fuel reactor, carbon conversion efficiency and CO2 capture efficiency were investigated experimentally. The results showed that coal gasification was the main factor which controlled the contents of CO and CH4 concentrations in the flue gas of the fuel reactor, carbon conversion efficiency in the process of chemical looping combustion of coal with NiO-based oxygen carrier in the interconnected fluidized beds. Carbon conversion efficiency reached only 92.8% even when the fuel reactor temperature was high up to 970 °C. There was an inherent carbon loss in the process of chemical looping combustion of coal in the interconnected fluidized beds. The inherent carbon loss was due to an easy elutriation of fine char particles from the freeboard of the spout-fluid bed, which was inevitable in this kind of fluidized bed reactor. Further improvement of carbon conversion efficiency could be achieved by means of a circulation of fine particles elutriation into the spout-fluid bed or the high velocity fluidized bed. CO2 capture efficiency reached to its equilibrium of 80% at the fuel reactor temperature of 960 °C. The inherent loss of CO2 capture efficiency was due to bypassing of gases from the fuel reactor to the air reactor, and the product of residual char burnt with air in the air reactor. Further experiments should be performed for a relatively long-time period to investigate the effects of ash and sulfur in coal on the reactivity of nickel-based oxygen carrier in the continuous CLC reactor.  相似文献   

5.
The Ni/ZrO2 catalyst is one of the most active systems for the methanation of CO to be employed in the hydrogen purification for PEMFC. This contribution aims to study the effect of ZrO2 on the methanation of CO and CO2. The catalytic behavior of Ni/ZrO2, Ni/SiO2, a physical mixture comprising Ni and ZrO2, and a double-bed reactor were evaluated. The TPD of CO and CO2, TPSR and the cyclohexane dehydrogenation reaction were carried out to describe the catalysts and the reactions. The high activity of Ni/ZrO2 catalyst toward the methanation of CO is related to the presence of active sites on the ZrO2 surface. The methanation of CO occurs on ZrO2 due to its ability to adsorb CO and also because of the hydrogen spillover phenomenon. Apparently, the effect of ZrO2 is less relevant for the methanation of CO2. Ni/ZrO2 is a very promising system for the purification of hydrogen.  相似文献   

6.
This study investigates the impacts of the alkaline earth metal (Mg, Ca, Sr, Ba) additives on properties and performances of nickel catalysts for CO2 methanation. The results show that addition of Mg, Sr, and Ba creates more pores while Ca addition leads to merge of small pores. The alkalinity of the catalyst increases with the addition of Mg, Ca, Sr or Ba, however, it does not necessarily enhance the catalytic activity. The degree of reduction of nickel species is another important factor affecting catalyst activity. Mg or Ca addition promotes the reverse water gas shift reaction to form more CO but not the methanation. In converse, with the addition of Sr or Ba, the activities for methanation increased drastically, especially in the low temperature region. In situ Diffuse Reflection Infrared Fourier Transform Spectroscopy (DRIFTS) studies show that *OH, *CO3, *CO2, CHx, HCOO*, *CO and H2CO* species are main reaction intermediates. Mg or Ca promotes the carbonate formation. Sr or Ba promotes *CO and H2CO* formation, which are the important reaction intermediates in the conversion of CO2 to CH4. In addition, the Electron Paramagnetic Resonance (EPR) characterization shows that the catalyst modified with Sr species generates the oxygen vacancies that prevent electrons from being paired, forming a Lewis basic position. The oxygen vacancies generated are crucial for enhancing the catalytic activities for methanation at the low reaction temperatures.  相似文献   

7.
A novel nano-sized Co–Ni bimetallic aerogel catalyst was synthesized via the sol–gel process followed by the supercritical drying method. The catalyst exhibited at least 28% higher activity and 15% higher H2 selectivity than those of a monometallic cobalt aerogel catalyst in methane oxidative CO2 (Oxy-CO2) reforming. Cold-model experiments revealed that channels were alleviated and the agglomerate size was reduced when the catalyst was applied in a magnetic assisted fluidized bed (MAFB). Owing to the improved fluidization quality of the catalyst in the MAFB reactor, CH4 conversion was raised by 12% and 7% as compared with those in the fixed bed reactor and the conventional fluidized bed reactor, respectively. Furthermore, the catalytic performance was quite stable during a 50 h reaction. This stable performance can be illustrated both by the superior catalytic property of the Co–Ni bimetallic aerogel catalyst and the intensified gas–solid interaction in the MAFB reactor.  相似文献   

8.
The present work investigates the performance of Re-promoted Nickel-based catalyst supported on calcium oxide for glycerol dry reforming reaction. The catalysts were prepared using wet impregnation method and their catalytic performance was tested in a packed bed reactor with CO2 to glycerol ratio (CGR) of 1–5, reaction temperature of 600–900 °C and gas hourly specific velocity (GHSV) of 1.44 × 104–7.20 × 104 ml gcat−1 s−1. The optimum operating temperature for both Ni/CaO and ReNi/CaO is 800 °C, with the GHSV of 3.6 × 104 mL gcat−1s−1. The optimum CGR for Ni/CaO and ReNi/CaO is 1.0 and 3.0, respectively. At this condition, hydrogen gas is directly produced from glycerol decomposition and indirectly from water-gas-shift reaction. After 2 h at the optimum conditions, 5% ReNi/CaO gives optimal glycerol conversion and hydrogen yield of approximately 61% and 56%, respectively, while in comparison to 15% Ni/CaO, the conversion and yield are 35 and 30%, respectively. Characterization of the spent catalysts showed the existence of whisker carbon from the CO2 hydrogenation and methanation processes. By comparing to 15% Ni/CaO, the addition of Re increases the acidic sites of the catalyst and enhanced the surface adsorption of OH group of the glycerol. The adsorbed glycerol on the catalyst surface would further react with the adsorbed CO2 to yield gases products. Thus, the catalytic activity improved significantly.  相似文献   

9.
Catalytic methane decomposition was investigated over 40 wt% Fe/Al2O3 catalyst in fluidized bed reactor (FLBR). After optimization of FLBR conditions in terms of catalyst bulk density, particle size, minimum fluidization velocity, and the catalyst bed height, the catalyst activity and stability tests were conducted by comparison with a fixed bed reactor (FBR). Although a similar stable methane conversion was obtained over both reactors, the pressure drop during 35 min operation of FBR was 9 times higher than that of FLBR, which indicated the possibility of continuous operation of methane decomposition process over FLBR. Further, the influence of the space velocity, feed dilution and regeneration on catalysts reactivity was studied in FLBR to conclude that a reaction condition of 12 L/gcat∙h, feed of 20%H2–80%CH4 and CO2-regeneration of deactivated catalysts may be favourable for operating methane decomposition in FLBR continually and effectively to provide stable hydrogen.  相似文献   

10.
The crucial problems for the catalysts of CO2 methanation are the low activity at low temperature and deactivation caused by metal sintering. In order to overcome the problems or to improve the shortages, a new scheme has been put forward by loading LaNi1-xMoxO3 with perovskite-type structure on SiO2. After reduction, Ni nanoparticles, MoOx and La2O3 would be all stay together and highly dispersed on SiO2 (Ni/MoOx-La2O3/SiO2). The techniques of BET, XRD, H2-TPR, HRTEM, ICP, H2 chemisorption and XPS were used to characterize the prepared samples. Through effectively combining MoOx which is active for the reaction of reverse water gas shift and Ni which can catalyze CO methanation, the resultant Ni/MoOx-La2O3/SiO2 catalyst exhibited pretty good performance for CO2 methanation, especially showing very good resistance to metal sintering. NiLa2O3/SiO2 catalyst without adding Mo was investigated for comparison. Since many metallic ions can enter into the lattice of a perovskite-type oxide, therefore, many combined catalysts for sequential reactions may be designed via this scheme.  相似文献   

11.
Carbon deposition behavior of a Co–Ni aerogel catalyst in CH4 oxy-CO2 reforming is investigated using a deactivation method in three types of reactors including a magnetic field assisted fluidized bed (MAFB) reactor, a conventional fluidized bed reactor and a fixed bed reactor. The spent catalysts are analyzed by TG/DSC and FESEM. It is found that the reactor influences the amount as well as type of carbon species on the spent catalysts. The amount of carbon on the spent catalyst in the MAFB reactor is 11.7 wt.%, which is 10.8 wt.% and 2.6 wt.% less than those in the fixed bed and conventional fluidized bed reactors. Fluidization behavior analysis reveals that agglomerate and bubble size of the catalyst are obviously decreased with the application of the MAFB, which should be accounted for the enhanced carbon resistance of the reactor.  相似文献   

12.
In order to improve the hydrogen production efficiency by glycerol steam reforming, a membrane-assisted fluidized bed reactor with carbon dioxide sorption is developed to enhance the reforming process. Low-temperature operation in a membrane reactor is necessary considering the thermal stability of membrane. In this work, the sorption-enhanced glycerol steam reforming process in a fluidized bed membrane reactor under the condition of low temperature is numerically investigated, where the hydrotalcite is employed as CO2 sorbents. The impact of operating pressure on the reforming performance is further evaluated. The results demonstrate that the integration of membrane hydrogen separation and CO2 sorption can effectively enhance the low-temperature glycerol reforming performance. The fuel conversion above 95% can be achieved under an elevated pressure.  相似文献   

13.
Catalytic CO2 methanation is a potential solution for conversion of CO2 into valuable products, and the catalyst plays a crucial role on the CO2 conversion and CH4 selectivity. However, some details involved in the CO2 methanation over the carbon supported Ni catalysts are not yet fully understood. In this work, commercial coal char (CC) supported Ni catalysts were designed and prepared by two different methods (impregnation-thermal treatment method and thermal treatment-impregnation method) for CO2 methanation. Effects of the preparation conditions (including the thermal treatment temperature and time, the mass ratio of CC:Ni and the preparation method), as well as the reaction temperature of CO2 methanation, were investigated on the catalyst morphology, reducibility, structure and catalytic performance. Fibrous Ni-CC catalyst is achieved and shows high CO2 conversion (72.9%–100%) and CH4 selectivity (>99.0%) during the 600-min methanation process. Adverse changes of the catalyst surface and textural properties, reducibility, particle size and morphology are the potential factors leading to the catalyst deactivation, and possible solutions resistant to the deactivation were analyzed and discussed. The CO2 methanation mechanism with the CO route was proposed based on the oxidation-reduction cycle of Ni in this work.  相似文献   

14.
This study presents a designed and tested integrated miniature tubular quartz-made reactor for hydrogen (H2) production. This reactor is composed of two concentric tubes with an overall length of 60 mm and a diameter of 17 mm. The inner tube was designed as the combustor using Pt/Al2O3 as the catalyst. The gap between the inner and outer tubes is divided into three sections: a liquid methanol-water vaporizer, a methanol-steam reformer using RP-60 as the catalyst and a carbon monoxide (CO) methanator using Ru/Al2O3 as the catalyst. The experimental measurements indicated that this integrated reactor works properly as designed. The methanol conversion, hydrogen production rate and CO concentration were found to increase with an increasing methanol/air flow rate in the combustor and decreases with an increasing methanol/water feed rate to the reformer. The methanator experimental results indicated that the CO conversion and H2 consumption can be enhanced by increasing the Ru loading. It was also found that the CO methanation depends greatly on the reaction temperature. With a higher reaction temperature, the CO methanation, carbon dioxide (CO2) methanation, and reversed water gas shift reactions took place simultaneously. CO conversion was found to decrease while H2 consumption was found to increase. At a lower reaction temperature both the CO conversion and H2 consumption were found to increase indicating that only CO methanation took place. From the experimental results the maximum methanol conversion, hydrogen yield, and CO conversion achieved were 97%, 2.38, and 70%, respectively. The actual lowest CO concentration and maximum power density based on the reactor volume were 90 ppm and 0.8 kW/L, respectively.  相似文献   

15.
A series of different amount ZrO2-promoted SiO2 supported Ni catalysts were prepared and used for methane autothermal reforming with CO2 and O2 [MATR] to synthesis gas in a fluidized bed reactor. Pulse-injected surface reactions and in situ XRD characterizations disclosed that CO2 dissociated exclusively at the boundary between Ni and ZrO2. O species derived from CO2 dissociation overflowed to metallic Ni and accelerated the activation of methane. Ni/5ZrO2–SiO2 catalyst with larger Ni–ZrO2 boundary exhibited the best activity and stability for MATR even at an extremely space velocity 90,000 h?1.  相似文献   

16.
For the solar thermochemical gasification of coal coke to produce CO + H2 synthetic gas using concentrated solar radiation, a windowed reactor prototype is tested and demonstrated at laboratory scale for CO2 gasification of coal coke using concentrated Xe light from a 3-kWth sun simulator. The reactor was designed to be combined with a solar reflective tower or beam-down optics. The results for gasification performance (CO production rate, carbon conversion, and light-to-chemical efficiency) are shown for various CO2 flow rates and ratios. A kinetics analysis based on homogeneous and shrinking core models and the temperature distributions of the prototype particle bed are compared with those for a conventional fluidized bed reactor tested under the same Xe light irradiation and CO2 flow-rate conditions. The effectiveness and potential impacts of internally circulating fluidized bed reactors for enhancing gasification performance levels and inducing consistently higher bed temperatures are discussed in this paper.  相似文献   

17.
《能源学会志》2020,93(1):415-424
The work in this paper evidences the viability of producing synthetic natural gas (SNG) via the methanation reaction tackling two fundamental challenges on methanation catalysis (i) the development of advanced catalysts able to achieve high CO2 conversion and high methane yields and (ii) the unexplored effect of residual methane on the methanation stream. Both challenges have been successfully addressed using Ni/CeO2-ZrO2 catalysts promoted with Mn and Co. Mn does not seem to be a good promoter while Co prevents carbon deposition and secondary reactions. In fact, our Co-doped sample reached high levels of CO2 conversion and CH4 selectivity, especially at low reaction temperatures. In addition, this catalyst exhibits excellent catalytic behaviour when methane is introduced into the gas mixture, indicating its feasibility for further study to be conducted in realistic flue gases environments and methanation units with recycling loops. Furthermore, when methane is introduced in the reactant mixture, the Ni-Co/CeO2-ZrO2 sample is very stable maintaining high levels of conversion and selectivity. Overall our Co-doped catalyst can deliver high purity synthetic natural gas for long-term runs, promising results for gas-phase CO2 conversion units.  相似文献   

18.
Exploiting Ni-based catalysts with excellent low-temperature activity is significant for CO2 methanation, which is a promising route to CO2 utilization. In this work, a facile combustion-impregnation method was developed to prepare the SiO2 supported Ni catalysts. Small Ni particles (around 6 nm) and massive Ni–SiO2 interface could be obtained due to the “combustion” process. The H2-temperature programmed desorption (H2-TPD) revealed the existence of Ni–SiO2 interface and confirmed the high Ni dispersion obtained by this method, which were vital for the activation of reactant. Moreover, more medium basic sites which were beneficial for the CO2 activation could also be created. In comparison with the reference Ni/SiO2 catalyst prepared by the conventional impregnation method, much higher CO2 conversion (66.9%) and more superior selectivity to CH4 (94.1%) were achieved with the Ni/SiO2-Gly catalyst at 350 °C. Additionally, it was also found that glucose, citric acid and glycine were all effective fuels for this combustion-impregnation method, and the as-prepared catalysts all exhibited greatly improved low-temperature activity. Therefore, this work represents an important step toward developing Ni-based catalysts for CO2 methanation by a promising wide-used method.  相似文献   

19.
Ag-promoted TiO2 nanoparticles immobilized over the cordierite monolithic support for dynamic and selective photo-reduction of CO2 to CO by the use of hydrogen has been investigated. Ag-loaded TiO2 NPs synthesized by a facile sol–gel method were coated over the monolith channels by dip-coating method. The samples were characterized by XRD, Raman, FTIR, SEM, TEM, XPS, N2 adsorption–desorption, UV–Vis and PL spectroscopy. The photo-activity test of Ag-modified TiO2 NPs was conducted for dynamic photocatalytic CO2 reduction with H2 as a reductant via a reverse water gas shift (RWGS) reaction in a cell type and monolith photo-reactors. Using 5 wt. % Ag/TO2 NPs, CO2 was energetically converted to CO with a yield rate 1335 μmole g-catal.?1 h?1, a 111 fold-higher than the amount of CO produced over the pure TiO2 catalyst. More importantly, photo-activity of Ag/TiO2 catalyst for CO evolution can be improved by 209 fold using monolith photo-reactor than the cell type reactor under the same operating conditions. This enactment was evidently due to the efficient light harvesting with larger illuminated surface area inside monolith micro-channels and efficient charges separation in the presence of Ag-metal. The reusability of Ag/TiO2 NPs loaded over the monolithic support showed favorable recycling capability than the catalyst dispersed in a cell reactor. A possible reaction mechanism for this observation has been discussed in detail.  相似文献   

20.
The extraction of petroleum and natural gas is often accompanied by a large number of associated gases, especially the high CO2 content reservoirs facing the emission of a large amount of CO2. CO2 methanation is recognized as one of the suitable candidates for CO2 utilization to reduce the emission of CO2. Because of the highly exothermic nature of the reaction, however, it is very important to enhance the heat transfer process inside the reactor and inhibit the formation of hot spots. In the fixed bed reactor, the heat transfer in the radial direction is greatly limited compared with that in the axial direction. Thus, this work adopted the radial flow reactor to evaluate the CO2 methanation process by the means of a numerical model based on OpenFOAM. Four types of radial flow reactor configurations, namely centrifugal Z-type, centrifugal Π-type, centripetal Z-type, and centripetal Π-type, were compared. The fluid flow, heat transfer, and reaction performances for these reactors were discussed under consistent operating conditions. Results show that the centrifugal Π-type structure has the most uniform flow field. In terms of heat transfer and reaction performance, the centripetal Z-type structure is the best among the four radial flow reactor configurations. These findings provide a theoretical basis and technical guidance for designing and developing radial flow reactors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号