首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The evolution of microstructure and properties of Al–5.87Zn–2.07Mg–2.42Cu alloys during non-isothermal aging was studied. The mechanical properties of the alloy were tested by stretching at room temperature. The results show that in the non-isothermal aging process, when the alloy is cooled to 140 °C, the ultimate tensile strength of the alloy reaches a maximum value of 582 MPa and the elongation is 11.9%. The microstructure was tested through a transmission electron microscope, and the experimental results show that the GP zones and η’ phases are the main strengthening precipitates. At the cooling stage, when the temperature dropped to 180 °C, the GP zones were precipitated again. Besides, the experimental results show that the main strengthening phase during non-isothermal aging is η’ phases.  相似文献   

2.
The effects of extrusion and heat treatments on the microstructure and mechanical properties of Mg–8Zn–1Al–0.5Cu– 0.5Mn magnesium alloy were investigated. Bimodal microstructure is formed in this alloy when it is extruded at 230 and 260 °C, and complete DRX occurs at the extruding temperature of 290 °C. The basal texture of as-extruded alloys is reduced gradually with increasing extrusion temperature due to the larger volume fraction of recrystallized structure at higher temperatures. For the alloy extruded at 290 °C, four different heat treatments routes were investigated. After solution + aging treatments, the grains sizes become larger. Finer and far more densely dispersed precipitates are found in the alloy with solution + double-aging treatments compared with alloy with solution + single-aging treatment. Tensile properties are enhanced remarkably by solution + double-aging treatment with the yield strength, tensile strength and elongation being 298 MPa, 348 MPa and 18%, respectively. This is attributed to the combined effects of fine dynamically recrystallized grains and the uniformly distributed finer precipitates.  相似文献   

3.
The microstructural features of the 980 °C isothermally forged Ti–22Al–25Nb (at.%) orthorhombic alloy during heat treatment were quantitatively investigated. The volume fraction of the O phase precipitates, the width and length of the lath O phase, and the diameter of equiaxed grains at different heat treatment temperatures were measured using an image analysis software. Quantitative relationships among heat treatment temperature, microstructure parameters, and microhardness were established. The relationship between microstructure parameters and microhardness was analyzed with a multiple regression analysis technique. The results indicate that the microstructure of this alloy is mainly depended on the heat treatment schedule. Only equiaxed O/α2 grains and B2 matrix existed when the samples were solution-treated above 980 °C, while equiaxed α2 grains, rim O around α2, and equiaxed/lath O could be obtained after the samples were solution treated below 980 °C. The width of lath and acicular O phases, and volume fraction of total precipitates could be controlled in the range of 0.37–0.88 μm, 0.09–0.48 μm and 10.91–60.18%, respectively. Experimental and statistical analysis showed a linear relationship between the microstructure parameters and microhardness.  相似文献   

4.
Abstract

This paper investigated the effect of different amounts of Ag addition on the microstructure, properties and precipitation processes of Al–4·6Cu–6·9Mg(wt-%) alloy using various analytical methods. It was found that Ag addition stimulated new X′ 9 and Ω phases precipitated finely and dispersively in the matrix, as a result of Mg–Ag co-clusters; the volume fraction of precipitates increased with the content of Ag addition. Such precipitation improved the mechanical performance of the Al–Cu–Mg alloy significantly. The mechanism for the formation of new precipitates is also described in this paper.  相似文献   

5.
Grain growth of nanostructured Al6061 produced by cryorolling and aging process was investigated during isothermal heat treatment in 100–500 °C temperature range. Transmission electron microscopy (TEM) observations demonstrate that after cryorolling and aging at 130 °C for 30 h, the microstructure contains 61 nm grains with dispersed 50–150 nm precipitates and 0.248% lattice strain. In addition, an increase in tensile strength up to 362 MPa because of formation of fine strengthening precipitation and nano-sized grains was observed. Thermal stability investigation within 100–500 °C temperature range showed release of lattice strain, dissolution of precipitates and grain growth. According to the X-ray diffraction (XRD) analysis, Mg2Si precipitates disappeared after annealing at temperatures higher than 300 °C. According to the results, due to the limited grain growth up to 200 °C, there would be little decrease in mechanical properties, but within 300–500 °C range, the grain growth, dissolution of strengthening precipitates and decrease in mechanical properties are remarkable. The activation energies for grain growth were calculated to be 203.3 kJ/mol for annealing at 100–200 °C and 166.34 kJ/mol for annealing at 300–500 °C. The effect of precipitation dissolution on Al lattice parameter, displacement of Al6061 (111) XRD peak and Portevin–LeChatelier (PLC) effect on stress–strain curves is also discussed.  相似文献   

6.
The microstructural evolution of Ni–42Ti–7Al and Ni–41Ti–7Al alloys as a function of solution and aging heat treatment was investigated using transmission electron microscopy(TEM), electron probe, and X-ray diffraction(XRD). The results reveal that the volume fraction of Ti2 Ni phase as well as its composition does not change significantly after as-solution treated at 1200 °C and aged at 850 °C. At the early stage of the aging treatment at 850 °C for 1 h, the cuboidal β' precipitate keeps coherency with the matrix; further aging, β' precipitate coarsens, and the semicoherency between the β/β' two phases are observed.The shape of coarsened β' precipitates changes to the globule, and the interface dislocations are introduced accompanied by the occurrence of semicoherent precipitates. Under the same heat treatment, compared to the Ni–42Ti–7Al alloy, the lattice misfits of the Ni–41Ti–7Al alloy between the β and β' two phases are larger, so the β' precipitates in Ni–41Ti–7Al alloy are coarsened severely and easily lose coherency with the matrix. The thermal stability of Ni–41Ti–7Al alloy is much worse when aging at 850 °C.  相似文献   

7.
The microstructure and mechanical properties of a 2024 Al alloy subjected to different levels of cold-rolling at room temperature and their evolution upon ageing at 453 K were investigated by means of microhardness measurements, tensile tests and transmission electron microscopy. The cold-worked 2024 Al alloy showed double-peak age strengthening behavior. After ageing for 120 min, the samples reached the first peak strength with quite low ductility. However, simultaneous high strength and ductility were achieved by prolonged ageing of 720 min. The first strengthening peak is due to the precipitation of fine S′ precipitates. The optimized mechanical properties of high strength and suitable ductility are attributed mainly to the precipitation of Ω-phase particles at the expense of S′ precipitates after ageing for 720 min. The Ω precipitates are effective in dislocation pinning and accumulation, and they can undergo plastic deformation to some extent, leading to simultaneously improved tensile strength, work-hardening ability and ductility. The present finding sheds light on the development of processing techniques to optimize the mechanical properties of 2024 Al alloy.  相似文献   

8.
Abstract

The influence of microstructure and strain rate on the mechanical behaviour of three titanium alloys having applications in aerospace, namely, commercially pure titanium (α phase), Ti–6Al–4V (α + β phases) and Ti– 15V–3Cr–3Sn–3Al (β phase) is investigated for both the parent metals and their gas tungsten arc weldments. The results indicate that the tensile strengths of the three as received titanium alloys and their weldments increase with increasing strain rate. However, their elongations decrease with increasing strain rate. The as received Ti–6Al–4V alloy and its weldment, with a mixed α and β phase microstructure, have the maximum strength and microhardness. Commercial purity titanium metal and its weldment exhibit the minimum strength and microhardness. The tough Ti–15V–3Cr–3Sn–3Al alloy and its weldment, having a fully β phase microstructure, appear to have optimum strength and microhardness. The tensile properties of all three titanium alloy weldments are inferior to those of the as received metals.  相似文献   

9.
The tensile properties, electrical conductivity, and microstructure of the forged Al-7.1Zn-1.1Mg-1.6Cu-0.14Zr alloy were investigated after a two-step ageing treatment at 120 and 170°C. The results indicate that the strength of the alloy reaches the peak value at 170°C for 1 h during the second step ageing and then decreases sharply. However, the electrical conductivity value increases continuously with the second ageing time increasing. The fracture mechanism of the alloy is intergranular fracture for 1 h and then changes to dimple transgranular fracture later, and the toughness of the alloy is improved significantly. The phases of η′ and η are major precipitates in the alloy under the two-step ageing condition. Discontinuous grain boundary precipitates and precipitate-free zones along the grain boundary are clearly observed.  相似文献   

10.
The high temperature mechanical properties (250 °C) and microstructure of a die-forged Al−5.87Zn− 2.07Mg−2.42Cu alloy after T6 heat treatment were investigated. High temperature tensile tests show that as the temperature increases from room temperature to 250 °C, the ultimate tensile strength of the alloy decreases from 638 to 304 MPa, and the elongation rises from 13.6% to 20.4%. Transmission electron microscopy (TEM) and electron backscattered diffraction (EBSD) were applied for microstructure characterization, which indicates that the increase of tensile temperature can lead to the coarsening of precipitates, drop of dislocation density, and increase of dynamic recovery. After tensile testing at 250 °C, a sub-grain structure composed of a high fraction of small-angle grain boundary is formed.  相似文献   

11.
Homogenization heat treatment of 2099 Al–Li alloy   总被引:3,自引:0,他引:3  
The microstructure evolution and composition distribution of as-cast and homogenized 2099 aluminum– lithium(Al–Li) alloy were studied by optical microscopy(OM), differential thermal analysis(DTA), scanning electron microscopy(SEM), energy dispersive spectrometry(EDS), area and line scanning, X-ray diffraction(XRD), and Vickers microhardness test methods. The results show that severe dendrite exists in the as-cast alloy. Cu, Zn, Mn, and Mg distribute unevenly from the grain boundary to inside. The low-melting point nonequilibrium eutectic phases dissolve into the matrix during the first-step homogenization, whereas the melting point of residual eutectic phases is elevated. After the second-step homogenization, most of the remaining eutectic phases dissolve into the matrix, except a small amount of Al–Cu–Fe phases. An optimized homogenization process of the 2099 Al–Li alloy is developed(515 °C 9 18 h ? 525 °C 9 16 h), which shows a good agreement with the homogenization kinetic analysis results.  相似文献   

12.
A nickel-based coating was deposited on the pure Al substrate by immersion plating, and the Al/Cu bimetals were prepared by diffusion bonding in the temperature range of 450–550 °C. The interface microstructure and fracture surface of Al/Cu joints were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The mechanical properties of the Al/Cu bimetals were measured by tensile shear and microhardness tests. The results show that the Ni interlayer can effectively eliminate the formation of Al-Cu intermetallic compounds. The Al/Ni interface consists of the Al3Ni and Al3Ni2 phases, while it is Ni-Cu solid solution at the Ni/Cu interface. The tensile shear strength of the joints is improved by the addition of Ni interlayer. The joint with Ni interlayer annealed at 500 °C exhibits a maximum value of tensile shear strength of 34.7 MPa.  相似文献   

13.
The effects of Ti addition on phase transformation, precipitation behavior, and microhardness response of Cu40Zn brass were investigated at elevated heat treatment (HT) temperatures using the powder metallurgy method. The volume fraction of the α phase increased with the elevated temperatures, which showed an equal value as that of the β phase at 400 °C, and reached a maximum value of 55.9% at 500 °C. The solid solubility of Ti in Cu40Zn brass matrix decreased as the HT temperature increased. Supersaturated Ti showed high chemical potential for precipitates' reaction in Cu40Zn brass. Lower HT temperature retained higher Ti solid solubility and fine precipitates. The precipitates presented in form of Cu2TiZn intermetallic compound, distributing uniformly in brass matrix which suppressed the phase and grain growth. After HT at elevated temperature, the precipitates coalesced, grew coarser, and segregated at the primary particle boundaries. The microhardness of the BS40-1.0Ti compact was primarily not only dependent on the solid solubility of Ti, but also dependent on the phase volume fraction of the α and β phases.  相似文献   

14.
《Acta Materialia》2007,55(9):3015-3024
Interruption of a conventional T6 heat treatment at 177 °C for the Al–Mg–Si–Cu alloy 6061 after a short period of time (20 min), by inserting a dwell period at a lower temperature (e.g. 65 °C), promotes secondary precipitation of Guinier–Preston (GP) zones. As a consequence, a much greater number of precursors to the β″ precipitates are produced so that a finer and denser dispersion of this phase is formed when T6 ageing is resumed. This change in microstructure causes significant and simultaneous improvements in tensile properties and fracture toughness. Secondary precipitation of GP zones occurs through a gradual evolution of a large number of Mg–Si(–Cu)-vacancy co-clusters formed during the initial ageing at 177 °C. The precise mechanism of secondary precipitation has been revealed by three-dimensional atom probe microscopy supplemented by transmission electron microscopy and differential scanning calorimetry.  相似文献   

15.
通过镦锻试验和模锻实验研究了Ti-Cu系合金半固态锻造行为,并对锻材进行了拉伸试验,讨论了Cu含量对半固态可锻性及力学性能的影响。结果表明:1000 °C至1150°C半固态锻造较常规锻造具有较小的顶锻压力;其中,1000 °C至1050°C间半固态锻造的Ti-Cu系合金均表现出较好的可锻性,在75%的锻造变形量下无明显缺陷。分析认为,Ti-Cu系列合金中含有较多的低熔点Ti2Cu相,随着半固态温度升高或Cu含量的增加,材料中的液相含量增加,增加的液相含量对变形起到润滑作用,减少了固相变形引起的应力集中,有效的降低了变形抗力,改善了成形性。力学性能研究表明:半固态锻造Ti-Cu系合金较常规锻造合金强度升高,塑性降低。随着Cu含量的升高,合金的强度明显提升,塑性降低。分析认为:力学性能的变化主要是由于Ti2Cu相析出含量、形态和分布相关,随着Cu含量和半固态温度的升高,更多Ti2Cu相在晶内和晶界析出,引起析出强化作用,同时,晶界析出的针状Ti2Cu相形成了偏析带,降低了合金塑形。  相似文献   

16.
Hypereutectic Al–Si alloy is an aluminum alloy containing at least 12.6 wt.% Si. It is necessary to evenly control the primary Si particle size and distribution in hypereutectic Al–Si alloy. In order to achieve this, there have been attempts to manufacture hypereutectic Al–Si alloy through a liquid phase sintering. This study investigated the microstructures and high temperature mechanical properties of hypereutectic Al–14Si–Cu–Mg alloy manufactured by liquid phase sintering process and changes in them after T6 heat treatment. Microstructural observation identified large amounts of small primary Si particles evenly distributed in the matrix, and small amounts of various precipitation phases were found in grain interiors and grain boundaries. After T6 heat treatment, the primary Si particle size and shape did not change significantly, but the size and distribution of CuAl2 (θ) and AlCuMgSi (Q) changed. Hardness tests measured 97.36 HV after sintering and 142.5 HV after heat treatment. Compression tests were performed from room temperature to 300 °C. The results represented that yield strength was greater after heat treatment (RT?~?300 °C: 351?~?93 MPa) than after sintering (RT?~?300 °C: 210?~?89 MPa). Fracture surface analysis identified cracks developing mostly along the interface between the primary Si particles and the matrix with some differences among temperature conditions. In addition, brittle fracture mode was found after T6 heat treatment.  相似文献   

17.
The W–Cu–Zn alloy with a-brass matrix and low W–W contiguity was prepared by method of electroless copper plating combined with spark plasma sintering(SPS) method.The effects of process and parameters on the microstructure and mechanical properties of the alloy were investigated.The W–Cu–Zn alloy with a relative density of 96 % and a W–W contiguity of about 10 % was prepared by original fine tungsten particles combined with wet mixing method and SPS solid-state sintering method at 800 °C for 10 min.The microstructure analysis shows that Cu–Zn matrix consists of nano-sized a-brass grains,and the main composition is Cu_3Zn electride.The nano-sized Cu was coated on the surface of tungsten particles by electroless copper plating method,and the fairly low consolidation temperature and short solid-state sintering time result in the nano-sized matrix phase.The dynamic compressive strength of the W–Cu–Zn alloy achieves to1000 MPa,but the alloy shows poor ductility due to the formation of the hard and brittle Cu_3Zn electrides.The fine-grain strengthening and the solution strengthening of the Cu–Zn matrix phase are responsible for the high Vickers microhardness of about 300 MPa for W–Cu–Zn alloy.  相似文献   

18.
《Acta Materialia》2001,49(15):3011-3017
The effect of heat treatment and exposure on the microstructure and mechanical properties of extruded, burn-resistant β titanium alloy Ti–25V–15Cr–2Al–0.2C (wt%) has been studied. It has been found that pre-exposure annealing at 600, 700 and 800°C affected the distribution of α phase that precipitated following subsequent exposure at temperatures between 450 and 550°C. Samples annealed at 600°C and subsequently exposed at 450°C showed excellent microstructural and property stability. Although the room-temperature ductility of the alloy decreased and the strength increased slightly with increasing exposure time at 500°C, no further drop in ductility was observed after 500 h. However, a gradual degradation of properties with exposure time was observed in samples exposed at 550°C. The significance of the observations is discussed in terms of the effect of pre-exposure annealing and exposure on α precipitation and tensile properties.  相似文献   

19.
Cu-Ag-Zr alloy is a newly developed copper alloy material which has an excellent combination of high mechanical strength and high electrical conductivity. By means of vacuum induction melting, Cu-Ag-Zr alloy was produced. The effects of aging processes on the microhardness and electrical conductivity characteristics of Cu-Ag-Zr alloy were studied. After aging at 450 °C for 4h, the alloy showed an excellent combination of microhardness and electrical conductivity: the microhardness and electrical conductivity reach 126 HV and 84%IACS, respectively. The precipitates responsible for the age-hardening effect are the fine and dispersed Cu5Zr, which has a face center cubic structure. Cu5Zr precipitates are fully coherent with the Cu matrix and give the Cu-Ag-Zr alloy higher microhardness and higher electrical conductivity.  相似文献   

20.
本研究的目的是通过研究富铜合金在室温和200°C下的抗拉强度和疲劳强度以评估合金的过时效行为,并将力学性能与其显微组织,尤其是二次枝晶臂间距(SDAS)相关联。在200°C下对过时效合金进行力学性能测试,结果显示,在A357合金中添加1.3%(质量分数)Cu能够使其极限抗拉强度、屈服强度和疲劳强度分别保持在近210、200和100 MPa。与四元(Al-Si-Cu-Mg)C355合金相比,A357-Cu合金具有更高的室温力学性能和相当的高温(200°C)力学性能。显微组织分析表明,SDAS对峰值时效A357-Cu合金的室温力学行为有影响,而对过时效合金在200°C的拉伸和疲劳性能影响甚微。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号