首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The formation, microstructure and properties of high-density TiN/Ti5Si3 ceramic composites created by the pyrolysis of preceramic polymer with filler were investigated. Methylpolysiloxane was mixed with TiH2 as filler and ceramic composites prepared by pyrolysis at 1200°C to 1600°C under N2, Ar and vacuum were studied. When a specimen with 70 vol.% TiH2 was pyrolyzed up to 1600°C in a vacuum after a preheat treatment at 850°C in a N2 atmosphere and subsequently heat-treated at 1600°C for 1 h under Ar at a pressure of 2 MPa, a ceramic composite with full density was obtained. The microstructure of the ceramic composite was composed of TiN and Ti5Si3 phases. Under specific pyrolysis conditions, a ceramic composite with a density of 99.2 TD%, a Vickers hardness of 18 GPa, a fracture toughness of 3.5 MPam1/2, a flexural strength of 270 MPa and a electrical conductivity of 6200 ohm−1·cm−1 was obtained.  相似文献   

2.
Al2O3 dispersion-strengthened copper alloy was prepared by reactive synthesis and spark plasma sintering(SPS) process. Studies show that nano-sized c-Al2O3 particles with 27.4 nm mean size and 50-nm interval are homogeneously distributed in copper matrix. The density of SPS alloy is about 99 %, meanwhile, the electrical conductivity of sintered alloy is 72 % IACS and the Rockwell hardness can reach to HRB 91.  相似文献   

3.
Cu-Al2O3 composites prepared by external oxidation method were further enhanced by severe plastic deformation (SPD) processing, including equal-channel angular pressing (ECAP) and high-pressure torsion (HPT) methods. The HV hardness and electrical conductivity of the samples before and after SPD processing were tested. Results revealed that ECAP samples (with an equivalent strain of about 5.34) showed a relative small increase in hardness, whereas a significant decrease in electrical conductivity. The HPT samples (with an equivalent strain of about 6.94) showed not only a much improved hardness but also a higher electrical conductivity. Thermal stability of the SPD-processed Cu-Al2O3 composites was tested, and the HPT samples maintained good HV hardness together with high electrical conductivity even at 600 °C. The combination of external oxidation method and HPT processing resulted in enhanced mechanical properties, good electrical conductivity, acceptable thermal stability, and much simplified oxidation process.  相似文献   

4.
Despite of many attractive properties of TiO2, the drawback of TiO2 ceramic is low fracture toughness for widely industrial application. The method to improve the fracture toughness and hardness has been reported by addition of reinforcing phase to fabricate a nanostructured composite. In this regard, graphene has been evaluated as an ideal second phase in ceramics. Nearly full density of nanostructured TiO2-graphene composite was achieved within one min using pulsed current activated sintering. The effect of graphene on microstructure, fracture toughness and hardness of TiO2-graphene composite was evaluated using Vickers hardness tester and field emission scanning electron microscopy. The grain size of TiO2 in the TiO2-x vol% (x = 0, 1, 3, and 5) graphene composite was greatly reduced with increase in addition of graphene. Both hardness and fracture toughness of TiO2-graphene composites simultaneously increased in the addition of graphene.  相似文献   

5.
Tb2TiO5 neutron absorber was synthesized by ball milling and sintering. Microstructure character of ball-milled Tb4O7-17.605%TiO2 (mass fraction, %) powders and sintered bulks was analyzed using XRD, SEM and TEM. The microhardness, coefficient of thermal expansion and thermal conductivity of sintered bulks were measured. The experiment results showed that the nanocrystalline solid solution was obtained during ball milling. After 96 h of ball milling, TiO2 was completely solved in Tb4O7 and the crystal size of Tb4O7 was up to 37 nm. The bulk materials prepared by cold isostatic pressing were sintered at 1300 °C. Tb2TiO5 bulks with an orthorhombic structure were obtained. The microhardness of sintered bulks, as well as the thermal conductivity, increased firstly with increasing ball milling time and then decreased. The coefficient of thermal expansion decreased initially and then increased with increasing ball milling time. For the sintered bulk with powder milled for 48 h, the highest values of both microhardness and thermal conductivity were observed, whereas the lowest coefficient of thermal expansion was exhibited. In addition, with increasing testing temperature, the thermal conductivity of sintered bulks initially fell and then rebounded while an opposite trend was found in the coefficient of thermal expansion.  相似文献   

6.
In the present work, Al metal matrix composites reinforced with Cu-based (Cu50Ti50) amorphous alloy particles synthesized by ball milling followed by a microwave sintering process were studied. The amorphous powders of Cu50Ti50 produced by ball milling were used to reinforce the aluminum matrix. They were examined by x-ray diffraction (XRD), scanning electron microscopy (SEM), microhardness and compression testing. The analysis of XRD patterns of the samples containing 5 vol.%, 10 vol.% and 15 vol.% Cu50Ti50 indicates the presence of Al and Cu50Ti50 peaks. SEM images of the sintered composites show the uniform distribution of reinforced particles within the matrix. Mechanical properties of the composites were found to increase with an increasing volume fraction of Cu50Ti50 reinforcement particles. The hardness and compressive strength were enhanced to 89 Hv and 449 MPa, respectively, for the Al-15 vol.% Cu50Ti50 composites.  相似文献   

7.
Aluminum alloys containing 2 and 4 wt.% copper reinforced with aluminum dodecaborides were successfully fabricated by squeeze casting employing pressures up to 62 MPa. The distribution of reinforcements throughout the composites was quantified, whereas the effect of pressure on the composites density and hardness was determined. In addition, the reinforcement chemical stability was examined using high-temperature x-ray diffraction which permitted to confirm the formation of AlB2 phase a result of AlB12 decomposition. The pressure effect on the squeezed composites was investigated by optical microscopy, Vickers microhardness testing, superficial Rockwell hardness testing, and differential thermal analysis. At the highest applied pressures, the castings density increased when the shrinkage porosity was practically eliminated. The composite superficial hardness improved by increasing the applied squeeze. The indirect squeeze cast technique caused Al2Cu phase segregation to upper regions of the specimens, while conversely, the AlB12 reinforcements segregated preferentially at lower regions of the casting.  相似文献   

8.
This paper deals with the deposition of La2Zr2O7 (LZO) and LaAlO3 (LAO) mixtures by air plasma spray (APS). The raw material for thermal spray, single phase LZO and LAO in a 70:30 mol.% ratio mixture was prepared from commercial metallic oxides by high-energy ball milling (HEBM) and high-temperature solid-state reaction. The HEBM synthesis route, followed by a spray-drying process, successfully produced spherical agglomerates with adequate size distribution and powder-flow properties for feeding an APS system. The as-sprayed coating consisted mainly of a crystalline LZO matrix and partially crystalline LAO, which resulted from the high cooling rate experienced by the molten particles as they impact the substrate. The coatings were annealed at 1100 °C to promote recrystallization of the LAO phase. The reduced elastic modulus and hardness, measured by nanoindentation, increased from 124.1 to 174.7 GPa and from 11.3 to 14.4 GPa, respectively, after the annealing treatment. These values are higher than those reported for YSZ coatings; however, the fracture toughness (K IC) of the annealed coating was only 1.04 MPa m0.5.  相似文献   

9.
Al2O3/Cu composites were prepared by external addition of Al2O3, and the effect of Al2O3 content on microstructure, density, hardness, electrical conductivity and vacuum electrical breakdown properties was studied. The results show that with increasing Al2O3 addition, the density of Al2O3/Cu composite significantly decreases, the hardness sharply increases and then slowly decreases, but the electrical conductivity invariably decreases. The vacuum breakdown test shows that with increasing Al2O3 addition, the breakdown strength first sharply increases and then decreases when the Al2O3 content exceeds 1.2 wt.%; the chopping current always exhibits a decreasing trend and the arc life first increases and then decreases. According to the morphology of arc erosion and analysis, the arc erosion resistance increases and then decreases sharply. In the range of experiments, the optimal arc erosion resistance of Al2O3/Cu composite can be obtained with the addition of 1.2 wt.% Al2O3.  相似文献   

10.
Differential scanning calorimetry, laser flash method, and dilatometry were used to study the thermophysical properties of quenched Cu50Zr50–xTix (x = 0, 2, 4, 6, 8) alloys in the temperature range from room temperature to 1100 K. Data obtained on the heat capacity, thermal diffusivity, and density have been used to calculate the coefficient of thermal conductivity. Temperatures corresponding to the stability of martensite CuZr phase, its eutectoid decomposition, and formation in Cu50Zr50–xTix alloys with different Ti contents upon heating have been determined. It has been found that the thermal diffusivity and thermal conductivity of the studied alloys are low and a typical of metallic systems. As the titanium content increases, the coefficients of thermal conductivity and thermal diffusivity vary slightly. It has been shown that the low values of thermophysical characteristics correspond to the better capability of amorphization and can be a criterion for the glass-forming ability of Cu–Zr-based alloys.  相似文献   

11.
Al2O3-10TiC composites were synthesized by spark plasma sintering (SPS) process. Microstructural and mechanical properties of the composite reveal homogeneous distribution of the fine TiC particles in the matrix. The samples were produced with different sintering temperature, and it shows that the hardness and density gradually increases with increasing sintering temperature. Abrasion wear test result reveals that the composite sintered at 1500 °C shows high abrasion resistance (wt. loss ~ 0.016 g) and the lowest abrasion resistance was observed for the composite sample sintered at 1100 °C (wt. loss ~ 1.459 g). The profilometry surface roughness study shows that sample sintered at 1100 °C shows maximum roughness (Ra = 6.53 µm) compared to the sample sintered at 1500 °C (Ra = 0.66 µm) corroborating the abrasion wear test results.  相似文献   

12.
The resistance of Fe0.56Ni0.44 alloy nanowires (fabricated by template synthesis using polymer track membranes) 60 and 100 nm in diameter to radiation with powerful pulsed 85% C+ + 15% H+ ions (E = 20 keV, j = 100 A/cm2, τ = 90 ns) has been investigated. The conclusion that nanosized regions of explosive energy release, so-called thermal spikes, which are thermalized regions of dense cascades of atomic displacements heated to several thousand degrees (in which the thermal pressure can reach several tens of GPa), play an important role in the nanowire structure change is drawn. These are observed as melted nanosized regions on the nanowire surface. Calculations have shown that energy supplied by an ion beam during the action of a single pulse in the used mode (provided that thermal radiation and thermal conductivity serve as energy sinks) can be both sufficient and insufficient to completely melt nanowires depending on their orientation with respect to the ion beam. The bending and failure of nonmelted nanowires is explained by the generation and propagation of post-cascade shock waves.  相似文献   

13.
The effect of hydrogenation at T = 150 and 200°C on the electrophysical properties of highly textured YBa2Cu3O y ceramics with different oxygen content has been investigated. Like hydration, hydrogenation results in the deterioration of these properties. However, in samples with high oxygen contents (y = 6.96) hydrogenated at T = 150°C after oxidation (400°C) or recovery annealing with subsequent oxidation, the critical current density and first critical field increase compared to the initial state. The improvement of the properties occurs mainly in a magnetic field applied perpendicularly to the c axis. As after hydration, this is connected with the formation of planar defects in the course of low-temperature annealing. In addition, in the process of the hydrogenation, the partial reduction of copper occurs with the formation of microinclusions of Cu2O and other products of chemical decomposition, which are extra pinning centers of magnetic vortices.  相似文献   

14.
In this study, the thermoelectric properties of 0.1 wt.% Cdl2-doped n-type Bi2Te2.7Sb0.3 compounds, fabrieated by SPS in a temperature range of 250°C to 350°C, were characterized. The density of the compounds was increased to approximately 100% of the theoretical density by carrying out consolidation at 350°C. The Seebeck coefficient, thermal conductivity, and electrical resistivity were dependent on a hydrogen reduction process and the sintering temperature. The Seebeck coefficient and the electrical resistivity increased with the reduction process. Also, electrical resistivity decreased and thermal conductivity increased with sintering temperature. The results suggest that carrier density and mobility vary according to the reduction process and sintering temperature. The highest figure of merit, 1.93×10−3 K−1, was obtained for the compound consolidated at 350°C for 2 min.  相似文献   

15.
In this paper, FeSiBAlNiCox (x = 0.2, 0.8) high-entropy alloy (HEA) powders were fabricated by mechanical alloying process, and the powders milled for 140 h were sintered by spark plasma sintering (SPS) technique. The microstructures and properties of as-milled powders and as-sintered samples were investigated. The results reveal that the final milling products (140 h) of both sample powders present the fully amorphous structure. The increased Co contents obviously enhance the glass forming ability and thermal stability of amorphous HEA powders, which are reflected by the shorter formation time of fully amorphous phase and the higher onset crystallization temperature, respectively. According to coercivity, the as-milled FeSiBAlNiCox (x = 0.2, 0.8) powders (140 h) are the semi-hard magnetic materials. FeSiBAlNiCo0.8 HEA powders possess the highest saturation magnetization and largest remanence ratio. The SPS-ed products of both bulk HEAs are composed of body-centered cubic solid solution, and FeSi and FeB intermetallic phases. They possess the high relative density above 97% and excellent microhardness exceeding 1150 HV. The as-sintered bulks undergo the remarkable increase in saturation magnetization compared with the as-milled state. The SPS-ed FeSiBAlNiCo0.8 HEA exhibits the soft magnetic properties. The electrochemical corrosion test is carried out in 3.5% NaCl solution. The SPS-ed FeSiBAlNiCo0.2 HEA reveals the better passivity with low passive current density, and the higher pitting resistance with wide passive region.  相似文献   

16.
The crystal structure of the high-temperature Y1–xCaxBa2Cu3O6.8 superconductor has been studied in a temperature range of 80–300 K using low-temperature X-ray diffraction analysis; its microstructure has been studied by scanning and transmission electron microscopy. Changes of the bond length in the structure of principal phase and precipitation topology of impurity phases and their compositions have been analyzed. An addition of calcium was shown to increase the environmental tolerance of the principal Y123 phase and its microhardness and ensures the low unchanged coefficient of thermal expansion. All of the facts indicate that the material can be used to manufacture composite superconducting articles.  相似文献   

17.
Electrical conductivity of films of CN x vacuum condensates which are considered as composites consisting of domains of diamond-like carbon and C2N has been studied. It is supposed that the conductivity of such a medium is determined exclusively by interphase boundaries which separate unlike domains from one another. The dependence of the electrical resistivity on the average content of nitrogen in the films in terms of such a model satisfactorily agrees with literature experimental results.  相似文献   

18.
The effect of TiB2 addition on sinterability and mechanical properties of B4C material was investigated. It was found that addition of TiB2 aids the sintering process and permits pressureless sintering at temperatures between 2050 and 2150 °C. This also alleviates grain growth during sintering. The relative density reaches 98.5% of the theoretical density by increasing the percentage of TiB2 in the composition. The mechanical properties such as hardness, fracture toughness, and bending strength were improved remarkably by addition of TiB2.  相似文献   

19.
Nano-TiO2/Co4Sb11.7Te0.3 composites were prepared by mechanical alloying (MA) and cold isostatic pressing (CIP) process.The phase composition,microstructure,and thermoelectric properties were characterized.The diffraction spectra of all samples well corresponds to CoSb3 skutterudite diffraction plane.TiO2 agglomerates into irregular clusters.They locate at the grain boundaries or some are distributed on the surface of Co4Sb11.7Te0.3 particles.For composites with high TiO2 content (0.6% and 1.0% TiO2),the phonon scattering by TiO2 particle,pores,and small size grains can result in a remarkable reduction in thermal conductivity.The maximum value of ZT is 0.79 for sample with 0.6 wt.% TiO2 at 700 K,which is 11% higher than that of non-dispersed sample.  相似文献   

20.
This article is devoted to studying the influence of thermocycling in the range of temperatures of the thermoelastic martensitic transformation B2–B19' on the microstructure, the temperatures of the martensitic transformations, and the mechanical properties of the equiatomic alloy Ti50Ni50 in the coarse-grained (CG) and ultrafine-grained (UFG) states, the latter obtained by equal-channel angular pressing (ECAP). One hundred cycles of thermocycling and the related increase in the dislocation density in the CG alloy led to a decrease in the temperatures of martensitic transformations. In the UFG alloy, the temperatures of the forward transformation (Ms, Mf) decrease by 2–3 K, and the temperatures of the reverse transformation (As, Af) increase by 6 K. The ultimate strength remains almost unaltered upon the thermocycling, but the yield stress increases substantially from 430 to 550 MPa and from 935 to 1120 MPa for the CG and UFG states, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号