首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
张有余  唐兴昌 《轧钢》2014,31(2):10-13
本文借助光学显微镜、X射线衍射仪(XRD)和电子背散射衍射技术(EBSD)对CSP流程生产Ti-IF钢的热轧、冷轧及退火板料分别进行宏观织构和微观织构的观察并研究其演变过程。结果表明,CSP工艺生产的Ti-IF钢的热轧织构比较散漫,开始形成较弱的γ纤维织构;冷轧织构主要是较强的γ纤维织构和较弱的α纤维织构,主要组分有{111}<110>、{111}<112>、{112}<110>、{001}<110>;退火织构以强烈的γ纤维织构为主,主要组分为{111}<110>、{111}<112>。  相似文献   

3.
Crystal plasticity finite element method based on a representative volume element model, which includes the effect of grain shape and size, is combined with electron backscattered diffraction experiment in order to investigate plastic deformation of NiTi shape memory alloy during uniaxial compression at 400 °C. Simulation results indicate that the constructed representation of the polycrystal microstructure is able to effectively simulate macroscopically global stress-strain response and microscopically inhomogeneous microstructure evolution in the case of various loading directions. According to slip activity and Schmid factor in {110}<100>, {010}<100> and {110}<111> slip modes, <100> slip modes are found to play a dominant role in plastic deformation, while <111> slip mode is found to be a secondary slip mode. In addition, the simulation results are supported well by the experimental ones. With the progression of plastic deformation, the (001) [\(0\bar 10\)] texture component gradually disappears, while the γ-fiber (<111>) texture is increasingly enhanced.  相似文献   

4.
《Acta Materialia》2003,51(16):4693-4706
Ferritic stainless steel sheets exhibit ridging parallel to the rolling direction when subjected to tension or deep drawing. The origin of ridging behavior has not been clearly explained yet. Many people agree that ridging originates from different plastic anisotropies of grains. In this study, 430 and 409L stainless steels having columnar and equiaxed structures were chosen as initial specimens to elucidate the role of microstructure and composition on ridging. The specimens initially having the columnar structure showed severe ridging and 409L stainless steel showed an inferior surface quality. The existence of band-like colonies of similar orientations was found in the center of the sheets by electron back-scattered diffraction measurement. In addition, the previous models suggested by other researchers were examined quantitatively by the crystal plasticity finite element method. In order to obtain a more realistic ridging simulation, the specimens containing variously oriented colonies in a textured matrix were also considered. The simulated results showed that the lower plastic strain ratio of {001}<110> colonies and different shear deformations of {111}<110> or {112}<110> colonies resulted in ridging.  相似文献   

5.
The microstructure and texture development of pure aluminum and aluminum alloy processed by high speed hot rolling are investigated. The aluminum sheets are rolled at temperatures ranging from 410°C to 560°C at a rolling speed of 15m/s without lubrication and quenched into water at an interval of 30 ms after rolling. The redundant shear strain induced by high friction increases beneath the surface at a reduction above 50% for Al alloy (AA5052) and above 60% for pure Al (AA1050). Dynamic recrystallization occurs in the surface region when the equivalent strain exceeds a critical value that depends on rolling temperature, while only recovery occurs in the center region. The critical equivalent strain for the occurrence of recrystallization in AA5052 is lower than that in AA1050. When the large strain is introduced beneath the surface, the shear texture, the main components of which are {001}<110> and {111}<110>, develops. In the center region, Cu-orientation and cube orientation develop. The shear texture beneath the surface is weak when recrystallization occurs.  相似文献   

6.
The shear textures developed in the surface layer by rolling procedures consist mainly of {001}<110> and {111}<uvw> orientations in FCC metal sheets, but the orientation components of shear textures vary with the rolling conditions. That is, either a single orientation component or a mixture of components can be developed depending on the rolling conditions. The purpose of this study is to analyze the various shear deformation textures in rolled FCC metal sheets.  相似文献   

7.
通过拉伸试验、X射线衍射(XRD)和扫描电镜(SEM)等表征方法,研究了异步冷轧前预处理工艺对6016铝合金板材织构及成形性能的影响。结果表明:异步冷轧前预时效处理可提高该铝合金成品板材的强度而不明显降低其塑性,且其平面各向异性指数IPA值明显减小;塑性应变比$\bar{r}$值以及杯突值IE成形性能指标均有所提高且分别达到0.89和8.27。铝合金板材获得较好综合性能的主要原因在于经时效预处理铝合金成品板材的剪切织构E{111}<110>和F{111}<112>的强度略微提高以及晶粒尺寸的减小。  相似文献   

8.
Ta–2.5W alloy with coarse grains was cold-rolled to reductions ranging from 5 to 40%. The evolution of the microstructure was investigated by optical microstructure, electron backscatter diffraction (EBSD). A few microbands appear when the reduction reaches 20%. The density of microbands increases with increasing reduction. When the reduction reaches 40%, grains are composed of one or two groups of microbands except the {001}<110 > orientations. Most of the inclination angle between microbands and RD in this condition is 20–35°. As the strain increases, the inclination angle between microbands and RD gets smaller. The habit plane of microbands can be {110} plane. The microbands and matrix usually share a common < 110 > or < 111 >. The mature body-centered cubic rolling texture, including α and γ fibers, is not developed until the reduction reaches 40%. Meanwhile, shear bands appear. New grains can be seen in shear bands and a model is proposed to explain this process.  相似文献   

9.
喻春明  张继明  党波  张毅 《金属热处理》2021,46(12):204-208
采用电子背散射衍射(EBSD)对不同轧制和热处理态的高磁感取向硅钢的重合位置点阵(CSL)晶界和织构进行了研究。结果表明,热轧态取向硅钢截面织构呈层状分布,表层主要为{110}<001>Goss织构,1/4厚度主要为{001}<110>立方织构、{112}<111>铜型织构和{110}<001>Goss织构,而心部则形成较强的{112}<111>铜型织构、{111}<110>形变织构和{110}<001>Goss织构;常化处理后截面织构梯度变化不明显,但中心位置{112}<111>织构向{110}<001>Goss织构转变。冷轧退火态主要织构为{110}<001>Goss织构、{112}<111>织构和{111}<110>形变织构。二次再结晶后,则生成强烈的{110}<001>Goss织构。随着织构的变化,CSL晶界也发生了明显的转变。热轧态CSL重位晶界中∑3~∑29均有出现,但比例较低;常化处理后CSL重位晶界比例增加,冷轧退火后CSL晶界比例大幅提高,特别是∑3、∑7、∑9和∑15等晶界;二次再结晶后,由于CSL晶界发生了转化,CSL晶界类型减少,∑3、∑13等晶界比例增加,∑9晶界消失。  相似文献   

10.
《Acta Materialia》2001,49(13):2583-2595
Asymmetric rolling, in which the circumferential velocities of working rolls are different, imposes shear deformation and in turn shear deformation textures to sheets through the thickness. A component of ND//〈111〉 in the shear deformation textures can improve the plastic strain ratios of aluminum sheets. In order to understand the evolution of ND//〈111〉, the strain histories and distributions in the sheets and the texture evolution during the asymmetric rolling have been measured and calculated. The shear deformation texture can vary with the ratio of shear to normal strain increments. As the ratio increases from zero to infinity, the texture moves from the plane strain compression texture (β fiber) to the ideal shear deformation texture consisting of {001}〈110〉, {111}〈110〉, and {111}〈112〉. The ratio increases with rolling reduction per pass in asymmetric rolling. However, it is practically difficult to develop a rolling reduction per pass high enough to obtain the ideal shear deformation texture. Imposing the positive and negative shear deformations on the sheet by reversal of the shearing direction can give rise to the ideal shear deformation texture.  相似文献   

11.
利用Z1200材料拉伸试验机检验了L485M管线钢热轧板卷纵向、30°、45°、横向4个不同方向的屈服强度和抗拉强度,然后利用X′ Pert Pro MRD X光衍射仪对板卷厚度不同位置、不同方向的织构进行了检测和分析。结果表明:L485M钢强度指标各向异性明显,横向>纵向>45°>30°,且横向强度明显高于其他3个方向。L485M钢织构检验结果与拉伸性能表现出明显的一致性,纵向、30°、45°主要织构基本为{112}<111>、{001}<110>,理论上横向与纵向晶面一致,晶向相差90°,即横向织构主要为{112}<110>、{001}<112>,因此其性能与其他方向差别明显。  相似文献   

12.
B2结构Fe3Al单晶在室温拉伸过程中的取向转动   总被引:2,自引:0,他引:2  
郑为为  杨王玥  孙祖庆 《金属学报》2000,36(11):1161-1164
借助于EBSD方法,研究了8个位向B2结构Fe3Al单晶室温拉伸变形时晶体取向的转动。结果表明,无论原始取向如何,在拉伸过程中晶体拉伸轴总会向着〈110〉方向转动,也即〈110〉为稳定取向。当晶体拉伸轴转向取向三角形中部的软取向时,晶体表现为几何软化,相应的加工硬化率较低。反之,当晶体拉伸轴转向〈001〉-〈101〉对称线时,晶体表现为几何硬化,相应的加工硬化率较高。当拉伸轴处于软取向时,单晶试样  相似文献   

13.
添加Nb改善了Fe81Ga19合金的塑性, 采用热轧和冷轧相结合的轧制工艺制备出厚度 为0.6 mm的(Fe81Ga19)+ 1%Nb(原子分数)合金薄板. 研究了(Fe81Ga19)+1%Nb合金轧态和退 火态薄板的织构及磁致伸缩效应. 结果表明: 合金的磁致伸缩与样品的织构密切相关, 再结 晶织构取决于热处理工艺. 轧态织构以{111}面织构和近似的{001}<110>旋转立方织构为主, 样品轧向的磁致伸缩系数λ∥=26×10-6. 在1250和1300 ℃保温2 h后水淬样品的织构分别呈现为近似的{011}<100>Gauss织构和单一{001}<100>立方织构, 其磁致伸缩 (3/2)λRD分别达到106×106和134×10-6  相似文献   

14.
《Intermetallics》2001,9(10-11):883-889
Texture evolution in TiAl depends on the type of deformation such as uniaxial compression, tension or rolling as well as on the initial microstructure. Cast TiAl shows a lamellar microstructure with an alignment of the lamellae and exhibits a strong texture. Deformation parallel to the aligned lamellae results in a plane-strain deformation which leads to a brass type texture. From room temperature up to 700 °C, compression tests of TiAl specimens with equiaxed microstructures result in <110>-fiber textures where the <101> component is shifted to <302>. At higher temperatures the orientation <302> is caused by dynamic recrystallization. In rolled sheets of TiAl with equiaxed microstructure the main texture component is a modified cube texture {100}<010> where the tetragonal c-axis is aligned in transverse direction of the sheet. This texture component is caused by dynamic recrystallization and appears to be stable against further rolling.  相似文献   

15.
CR340轧制差厚板(TRB)在轧制过程中,其不同的厚度区形成了不同的织构,分别是薄区的{111}<01>和{141}<22>织构,过渡区的{225}<10>和{211}<01>织构,厚区的{876}<5>和{411}<01>织构。根据EBSD测试结果,建立了各厚度区的多晶体塑性有限元模型,研究了单向拉伸时各厚度区的晶粒织构对滑移系开动情况和应力应变分布的影响规律。结果表明,薄区的{111}<01>织构和厚区的{876}<5>织构有利于滑移系的开动,开动的数量分别为9和8组,这使得等厚区在变形中的应力集中弱化,具有良好的塑性变形行为。而过渡区的{225}<10>、{211}<01>织构的晶粒滑移系开动较少,开动的数量分别为6和7组,导致应力集中,其塑性变形行为较差。差厚板各厚度区织构的差异导致其塑性变形呈现明显的不均匀性,其断裂位置发生在单轴拉伸时塑性变形较差的过渡区。  相似文献   

16.
《Acta Materialia》2001,49(12):2259-2268
Texture and microtexture measurements were correlated with mechanical property data for a superplastic 5083 aluminum alloy. Prior processing had included an overaging treatment followed by severe rolling deformation and the as-received material was annealed prior to mechanical testing. Discontinuous recrystallization by particle-stimulated nucleation during the annealing accounts for a predominantly random texture, although a weak {100}<0vw> component was present, as well as a random grain boundary disorientation angle distribution. During elevated temperature deformation under dislocation-creep-controlled conditions, a distinct <111> fiber component and a relatively weak {100}<001> cube orientation, which are mutually compatible during uniaxial tensile extension, became apparent in the texture. Also, low-angle boundaries became evident in the disorientation distribution. In contrast, the random texture component and the randomness of the disorientation distribution became more evident when the material was deformed under conditions of grain boundary sliding control of deformation. A transition from dislocation creep to grain boundary sliding observed in the microtexture measurements of this work may be predicted by treating constitutive equations for dislocation creep and grain boundary sliding in an additive manner.  相似文献   

17.
����̼Ti��IF�����ܺ��������о�   总被引:1,自引:0,他引:1  
 实验研究了超低碳Ti IF钢性能和析出相,结果表明:超低碳Ti IF钢具有低的屈强比、高塑性、高应变硬化性能和高成形性能,其屈强比约为0.5,抗拉强度为310 MPa,屈服强度为155 MPa,伸长率47%~50%,应变硬化指数n值为0.26~0.28,塑性应变比r值均在2.0左右,最高r值达2.25。退火织构特征均表现为较强的γ纤维织构和较弱的α纤维织构,γ纤维织构主要为{111}<110>和{111}<112>,最强点在{111}<110>处,有利的{111}取向织构使Ti IF钢具有优异的深冲性能。在超低碳钢中加入微量的Ti,形成碳化物、氮化物和氮碳化物,可以固定间隙原子(如C、N原子),获得无间隙原子钢,同时,适量固溶Ti,能显著提高钢的深冲性能。析出相主要有Ti(N,C)及TiC ,Ti2CS, Ti3S4及很少量的AlN,而粗大稀疏的Ti2CS等析出相对晶界的钉扎力小,相应的促进了{111}再结晶织构的发展,从而获得较高的r值。  相似文献   

18.
To produce molybdenum sheets or ribbons the metal has to be thermomechanically processed leading to characteristic deformation and recrystallization textures depending on the deformation and/or annealing conditions. The so produced textures have an impact on certain properties of the metal. The present work concentrates on the influence of different rolling processes and the last step of heat treatment on microstructure, texture and the mechanical properties of molybdenum sheets. Usually, unidirectional rolling leads to a strengthening of the main texture component, which for molybdenum is a weak α-fibre with a maximum at the rotated cube component {100} < 110>. This component leads to a strong anisotropy of the mechanical properties in the sheet plane. Cross rolling steps during the thermomechanical process increase the rotated cube component. To decrease the intensity of the rotated cube component and simultaneously increase the intensity of the γ-fibre, specific annealing stages of the final heat treatment were tested. The texture development during these annealing stages is discussed with regard to microstructural changes. The strong differences in the textures measured are reflected in the plastic anisotropy characterized by the Lankford parameters. The Taylor–Bishop–Hill theory is used to qualitatively explain the plastic anisotropy.  相似文献   

19.
In-plane anisotropy of 1545 aluminum alloy sheet   总被引:3,自引:0,他引:3  
1 INTRODUCTIONThe in plane anisotropy of mechanical proper ties brings the limitation to the use of alloy sheet.At the same time, during the material processing,the difficulties of contour machining will also be in creased. For this reason, when designing high performance aluminum alloy sheets, the in planeanisotropy is an important performance parameterthat must be considered. Studies have shown thatminor Sc and Zr in the Al Mg Mn alloy can refinegrains of cast ingot, inhib…  相似文献   

20.
Tungsten is paid special attention due to its superior properties, especially in nuclear field. Meanwhile it is suitable for texture simulation investigation of BCC metals and alloys as it's near elastically isotropic. This study investigates the cold rolling deformation texture of polycrystalline tungsten using RS model, in which the stress and strain consistence is realized simultaneously. The texture evolution and effects of deformation parameters, including external as well as internal reaction stress, strain and activation of different slip, on texture during rolling are discussed by comparing the simulated results and reported experimental results in literatures. The results show that, the cold rolling deformation texture could be simulated statistically based on RS model. The accumulation of each reaction stress is different. The up-limit of reaction stress σ'12 is found to be medium, meaning that σ'12 exerts important effect on texture evolution. Much lower accumulation level of σ'13 as well σ'23 is displayed, each of which within certain range contributes to the increase of different γ-fiber texture components. The effect of σ'22 can't be ignored during rolling, especially in the case of obtaining {111}<110> texture. Regarding the deformation textures of tungsten rolled to true strains of −1.7 and −2.91, {001}<110> texture is strengthened with the increasing strain and becomes dominant, implying the easier activation of {112}<111> slip systems; γ-fiber texture is weakened at higher strain, and the formation of {111}<112> texture shows significant effect of surface shear stress σ13, which is due to the nonnegligible surface friction when rolling at high temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号