首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 440 毫秒
1.
Two series of aromatic polyimides containing various linkage groups based on 2,7‐bis(4‐aminophenoxy)naphthalene or 3,3′‐dimethyl‐4,4′‐diaminodiphenylmethane and different aromatic dianhydrides, namely 4,4′‐(4,4′‐isopropylidenediphenoxy)bis(phthalic anhydride), 4,4′‐(hexafluoroisopropylidene)bis(phthalic anhydride), 3,3′,4,4′ benzophenonetetracarboxylic dianhydride, 9,9‐bis[4‐(3,4‐dicarboxyphenoxy)phenyl]fluorene dianhydride and 4,4′‐(4,4′‐hexafluoroisopropylidenediphenoxy)bis(phthalic anhydride), were synthesized and compared with regard to their thermal, mechanical and gas permeation properties. All these polymers showed high thermal stability with initial decomposition temperature in the range 475–525 °C and glass transition temperature between 208 and 286 °C. Also, the polymer films presented good mechanical characteristics with tensile strength in the range 60–91 MPa and storage modulus in the range 1700–2375 MPa. The macromolecular chain packing induced by dianhydride and diamine segments was investigated by examining gas permeation through the polymer films. The relationships between chain mobility and interchain distance and the obtained values for gas permeability are discussed. © 2014 Society of Chemical Industry  相似文献   

2.
Addition polyimide oligomers have been synthesized from 3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride and 3,3′-methylenedianiline using a variety of latent crosslinking groups as end-caps. The nominal 1300 molecular weight imide prepolymers were isolated and characterized for solubility in amide, chlorinated and ether solvents, melt-flow and cure properties, glass transition temperature, and thermal stability on heating in an air atmosphere. Adhesive strengths of the polyimides were obtained both at ambient and elevated temperatures before and after aging at 232°C. Properties of the novel addition polyimides were compared to a known nadic end-capped adhesive, LARC-13.  相似文献   

3.
A series of phosphorus-containing nadimide end-capped resins having different backbones was prepared by reacting endo-5-norbornene-2-3-dicarboxylic acid anhydride (nadic anhydride), pyromellitic dianhydride (PMDA)/3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride (BTDA)/2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6F) and tris(3-aminophenyl)phosphine oxide (TAP) in glacial acetic acid/acetone. Structural characterization of the resins was done by elemental analysis, FTIR, and 1H-NMR. Thermogravimetric studies revealed a multistep decomposition reaction for uncured resins. Residual weight at 800°C in nitrogen was found to be 50–60%. Resins cured at 300°C for 1 h in air atmosphere were stable up to 440 ± 20°C and decomposed in a single step above this temperature. The char yields of cured resins were in the range 63–71.5%. © 1992 John Wiley & Sons, Inc.  相似文献   

4.
Epoxy–imide resins have been obtained through the reaction of Araldite GY 250 (diglycidylether of bisphenol-A and epichlorohydrin; difunctional) and Araldite EPN 1138 (Novolac-epoxy resin; polyfunctional) with bis(carboxyphthalimide)s derived from 4,4′-diaminodiphenylsulfone, 3,3′-diaminodiphenylsulfone, 4,4′-diaminodiphenylmethane and 4,4′-diaminodiphenylmethane and trimellitic anhydride. For each epoxy-imide resin system, epoxy equivalent to carboxy equivalent ratio has been optimised to obtain the maximum tensile lap shear adhesive strength on stainless steel substrates at room temperature. The lap shear strength at 100, 150, and 175°C has been determined for the optimum ratio. Araldite EPN-1138-based systems give the lap shear strength of 141–182 kg/cm2 at room temperature for the optimum compositions and retain about 84–100% of the lap shear strength at 150°C. Araldite GY-250-based systems have lap shear strength of 183–193 kg/cm2 and retain 76–84% of the lap shear strength at 150°C except for the one cured with bis (carboxyphthalimide) prepared from 4,4′-diaminodiphenylmethane, which retains only 17% of the lap shear strength. Among the systems studied, Araldite GY 250 cured with bis (carboxyphalimide) synthesized from 3,3′-diaminodiphenylsulfone appears to be the best, retaining 75% (138 kg/cm2) of the lap shear strength at 175°C.  相似文献   

5.
A series of liquid crystalline aromatic polyesters containing 3,3′-dimethylbiphenyl-4,4′-dicarboxylic acid and 3,4′-dimethyl-biphenyl-4,3′-dicarboxylic acid was prepared by a melt polycondensation procedure and characterized by elemental analysis, DSC and TMA measurements, and optical polarizing microscopy. An optimal composition of the copolymer having a melting temperature around 300°C is proposed and the rheological behavior is discussed. Most of the mechanical properties of this copolymer were found to be close to those of Vectra A950® used as a reference sample. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
4,4′‐Diamino‐3,3′‐dimethyldiphenylmethane was used to prepare polyimides in an attempt to achieve good organo‐solubility and light color. Polyimides based on this diamine and three conventional aromatic dianhydrides were prepared by solution polycondensation followed by chemical imidization. They possess good solubility in aprotonic polar organic solvents such as N‐methyl 2‐pyrrolidone, N,N‐dimethyl acetamide, and m‐cresol. Polyimide from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and diphenylether‐3,3′,4,4′‐tetracarboxylic acid dianhydride is even soluble in common solvents such as tetrahydrofuran and chloroform. Polyimides exhibit high transmittance at wavelengths above 400 nm. The glass transition temperature of polyimide from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and pyromellitic dianhydride is 370°C, while that from 4,4′‐diamino‐3,3′‐dimethyldiphenylmethane and diphenylether‐3,3′,4,4′‐tetracarboxylic acid dianhydride is about 260°C. The initial thermal decomposition temperatures of these polyimides are 520–540°C. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 72: 1299–1304, 1999  相似文献   

7.
In the present article with the aim to find new polybenzoxazines with improved thermal properties, new benzoxazine monomers based on phenol and the following aromatic diamines were synthesized: 3,4′-oxydianiline (P-3,4′oda); o-tolidine (P-ot); m-tolidine (P-mt) and 4,4′-(1,3-phenylenedioxy)dianiline (P-tper) and their comparison with the previously known benzoxazines based on 4,4′-diaminodiphenylmethane (P-ddm); 4,4′-oxydianiline (P-4,4′-oda) and 2,2-Bis[4-(4-aminophenoxy)phenyl]propane (P-bapp). The dependence of the thermal and rheological characteristics on the structure of benzoxazine monomers based on various diamines was estimated and possible methods for their processing were identified. All the polybenzoxazines obtained in this work have high char yield and reduced flammability. It was found that the structure of the diamine can have a fundamental effect on both the rheological properties and heat resistance of polybenzoxazines. The benzoxazine monomers P-ddm, P-tper and P-4,4′oda retain viscosity up to 1 Pa s. at 110°C for 2 h, the P-tper monomer with a resorcinol bridge has about five times lower viscosity compared to the P-bapp monomer with a bisphenol A bridge. Polybenzoxazines based on the monomers P-ddm, P-mt, P-bapp and P-tper show excellent thermal stability with a temperature of 10% weight loss above 400°C. In particular, Tg of P-3,4′oda and P-mt monomers is relatively high (202 and 239°C, respectively), while P-ot's is unusually low (115°C), which may be caused by the specific effect of the substituents in the aromatic ring of the amine and their position.  相似文献   

8.
The thermal crosslinkability of the quinoxaline moiety incorporated within poly(phenylquinoxalines) was demonstrated by differential scanning calorimetry (DSC), torsional braid analysis (TBA), and high-temperature adhesive evaluation. Several homopolymers, random copolymers, and polymer blends were prepared and evaluated. A new bis(1,2-dicarbonyl) monomer, 4-(4-phenylglyoxalylphenoxy)phenylglyoxal hydrate, was prepared and reacted with 3,3′, 4,4′-tetraaminobiphenyl to provide a polymer where a phenyl group was located on alternating quinoxaline rings. The apparent Tg of this polymer was initially 280°C and increased to 360°C after exposure to 400°C for 0.5 hr in air.  相似文献   

9.
A new aromatic heterocyclic diamine monomer containing bi-benzimidazole unit, 2,2-bis(4′-aminophenyl)-5,5-bi-1H-benzimidazole, was synthesized from 2,2-bis(4′-nitrophenyl)-5,5-bi-1H-benzimidazole (BNPBBI) prepared via the reaction of 3,3′,4,4′-biphenyltetramine and p-nitrobenzaldehyde with a high yield. Their compositions and chemical structures containing polybenzimidazole backbone were characterized by FTIR, 1H NMR and elemental analysis. A series of aromatic polyimides containing the heterocyclic moiety in the main chain were prepared by the reaction of BAPBBI with various aromatic dianhydrides of 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 4,4′-oxydiphthalic anhydride or pyromellitic dianhydride. The polymers possess a high glass transition temperature of >415 °C and a good thermal stability up to 566 °C with a 5 % weight loss. The combination of polybenzimidazole and polyimide via introducing BAPBBI into the main chains provides the rigid structure, and macromolecular interactions are thus enhanced, resulting in the outstanding mechanical properties. These polyimides exhibit the strong tensile strength of 201 to 327 MPa, and the ultrahigh tensile moduli of 10.7 to 15.5 GPa without post stretching.  相似文献   

10.
This article describes the synthesis and characterization of several methyl nadimides endcapped resins based on tris(3-aminophenyl)phosphine oxide. These resins were prepared by reacting methyl-5-norbornene 2,3-dicarboxylic anhydride (methyl nadic anhydride) (MNA), pyromellitic dianhydride (PMDA)/3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride (BTDA)/2,2-bis(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6F), and tris(3-aminophenyl)phosphine oxide (TAP) in glacial acetic acid/acetone. Structural characterization of the resins was done by elemental analysis, IR, and 1H-NMR. Thermal characterization of uncured resins using DSC and TGA techniques revealed an exothermic transition accompanied by a weight loss in the temperature range of 200–350°C. Residual weight at 800°C in nitrogen was found to be 47–55%. Isothermal curing of the resins was done at 340°C for 1 h in an air atmosphere. The cured resins were stable up to 400 ± 20°C. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
A series of soluble aromatic polyesters (polyarylates) containing arylene sulfone ether linkages and having inherent viscosities of 0.36–1.10 dl/g were prepared by the two-phase low temperature polycondensation of 4,4′-[sulfonyl-bis(p-phenyleneoxy)]dibenzoyl chloride and 3,3′-[sulfonylbis(p-phenyleneoxy)]-dibenzoyl chloride with various bisphenols in an organic solvent-aqueous alkaline solution system in the presence of a phase transfer catalyst. Bisphenols 4,4′-[sulfonylbis(p-phenyleneoxy)]diphenol and 3,3′-[sulfonylbis(p-phenyleneoxy)]-diphenol were synthesized in quantitative yields by an improved procedure. The aromatic polyesters prepared were characterized by infrared spectroscopy, elemental analysis, solution viscosity, thermogravimetric analysis, differential scanning calorimetry and X-ray diffraction. The polyesters prepared had glass transition temperatures in the range 150–230°C and initial decomposition temperatures of 397–491°C. They gave transparent, tough and flexible films by the solution casting technique.  相似文献   

12.
—An adhesive screening study was performed at NASA Langley Research Center on two linear aromatic polyamide-imide (PAI) homopolymers and two linear aromatic PAI copolymers. The homopolymers were made with either of two amide diamines, 3,3'- or 4,4'-diaminobenzanilide (DABA), and 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA). The two copolymers studied were prepared with a combination of 3,3'-DABP and amide diamines. These aromatic PAIs possess high thermal stability because of intermolecular hydrogen bonding and chain stiffness. Lap shear strength (LSS) tests, conducted at room temperature, 177, 204 and 232°C, were the primary criterion for evaluation of the polymers as adhesives. Included in the study were measurements of the glass transition temperature made on fractured specimens for each bonding condition and a visual determination of the type of bond failure for specimens at each test temperature. Of the four adhesive candidates investigated, the best LSS values were obtained with the PAI copolymer identified as LARC-TPI(25% 3,3'-DABA). However, the LSS values were higher for the LARC-TPI polyimide with which the adhesive strengths were compared. The combination of a high molecular weight and the increased interchain electronic interaction associated with the amide group appears to contribute to the poor flow properties observed.  相似文献   

13.
Ten nadicimide/methyl nadicimide end-capped oligomeric resins were prepared by reacting endo-5-norbornene-2,3-dicarboxylic acid anhydride (methyl nadic anhydride), pyromellitic dianhydride (PMDA)/3,3′,4,4′-benzophenone tetracarboxylic acid dianhydride (BTDA)/2,2-bis(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6F), and bis(3-aminophenyl) methyl phospine oxide (BAP) in glacial acetic acid/acetone. Structural characterization of the resins was done by elemental analysis, IR, and 1H-NMR. Multistep decomposition was observed in the TG scan of uncured resins in a nitrogen atmosphere. Residual weight at 800°C depended on the structure and ranged between 25 and 51%. Isothermal curing of the resins was done at 300°C for 1 h in an air atmosphere. These cured resins were stable to 350 ± 30°C and decomposed in a single step above this temperature. The char yield of the resins increased on curing and was in the range 34–70%. © 1997 John Wiley & Sons, Inc. J Appl Polm Sci 65:861–869, 1997  相似文献   

14.
Thermostable polyamideimides with inherent viscosity of 1.02–1.50 dL/g were synthesized from reacting of diamine-terminated aromatic amide prepolymer with various diisocyanate terminated imide prepolymers. The imide prepolymer was prepared by using 4,4′-diphen-ylmethane diisocyanate to react with 3,3′,4,4′ benzophenonetetracarboxylic dianhydride, 3,3′,4,4′ sulfonyl diphthalic anhydride, or 4,4′-oxydiphthalic anhydride using the direct one-pot method to improve their solubility. Almost all of the polyamideimides were generally soluble in a wide range of organic solvents such as N,N-dimethylformamide, N,N-dimeth-ylacetamide, N-methyl-2-pyrrolidone, dimethyl sulfoxide, and pyridine at room temperature. Polymers with high imide content required high temperatures to dissolve. All polyamide-imides had a glass transition temperature of 223–352°C and showed a 10% weight loss temperature of 415–575°C in air and 424–583°C in nitrogen atmosphere. The tensile strength, elongation at break, and initial modulus of polymer films ranged from 61 to 108 MPa, 5 to 10% and 1.54 to 2.50 GPa, respectively. These copolymers were partly crystalline in structure as shown by X-ray pattern. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
Fluorinated polyimides were prepared from 2,2′,6,6′-tetrafluorobenzidine and four conventional dianhydride monomers by a solution polycondensation reaction followed by a chemical imidization. Polyimide based on 2,2′,6,6′-tetrafluorobenzidine and hexafluoroisopropylidene bis(3,4-phthalic anhydride) (6FDA) is soluble in organic solvents such as NMP, DMA, DMF, THF, chloroform, and acetone while those based on 2,2′,6,6′-tetrafluorobenzidine and pyromellitic dianhydride (PMDA), benzophenone-3,3′,4,4′-tetracarboxylic acid dianhydride (BTDA), diphenylether-3,3′,4,4′-tetracarboxylic acid dianhydride (ETDA) are not. Polyimide from 2,2′,6,6′-tetrafluorobenzidine and 6FDA possesses high optical transparency at 350–700 nm and has a in-plane refractive index of 1.558 at 632.8 nm. All polyimides exhibit glass transition temperatures above 350°C. They also possess very high thermal stability. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1605–1609, 1998  相似文献   

16.
The functional diamines 3,3′‐diaminochalcone and bis(3‐aminophenyl)‐3,5‐bis(trifluoromethyl)phenyl phosphine oxide were successfully prepared by simple and convenient procedures with short reaction times, and the overall yields were 78 and 70%, respectively. Copolyimides prepared from 3,3′‐diaminochalcone, bis(3‐aminophenyl)‐3,5‐bis(trifluoromethyl)phenyl phosphine oxide, and 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride exhibited excellent solubility in several organic solvents, such as dimethyl sulfoxide, N,N‐dimethylformamide, N‐methyl pyrrolidone, tetrahydrofuran, and acetone. They also showed very good thermal stability even up to 450°C for 5% weight loss (by thermogravimetric analysis) in nitrogen and a high glass‐transition temperature up to 274°C (by differential scanning calorimetry) in nitrogen. The copolymers' adhesive and photoreactive properties were also investigated, and it was confirmed that the copolyimide containing chalcone and phosphine oxide moieties in the main chain had good adhesiveness and photoreactivity. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

17.
Poly(amide imide) copolymers were synthesized with different molar ratios of 4,4‐diphenylmethane diisocyanate, two types of aromatic dianhydrides (pyromellitic dianhydride (PMDA) and 3,3′,4,4′‐sulfonyl diphthalic anhydride (DSDA)), and a diacid, which was derived from 3,3′‐dinitrobenzidine and isophthaloyl chloride in a previous work. In this study, the copolymers were further reacted with a reducing agent, and the nitro groups in the copolymers were hydrogenated into amine groups. Then, the amine‐group‐containing poly(amide imide) copolymers were cyclized at 180°C to form the poly(benzimidazole imide amide) copolymers in poly(phosphoric acid), which acted as a cyclizing agent. The resultant copolymers were soluble in sulfuric acid and poly(phosphoric acid) at room temperature and in sulfolane or N‐methyl‐2‐pyrrolidone under heating to 100°C with 5% lithium chloride. According to wide‐angle X‐ray diffraction, all the copolymers were amorphous. According to thermal analysis, the glass‐transition temperature ranged from 270 to 322°C, and the 10% weight‐loss temperature ranged from 460 to 541°C in nitrogen and from 441 to 529°C in air. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 91: 378–386, 2004  相似文献   

18.
Polyimides were prepared from diamines: 2,4,6-trimethyl-1,3-phenylenediamine (3MPDA) and 2,3,4,5-tetramethyl-1,4-phenylenediamine (4MPDA). 1,4-Bis(3,4-dicarboxyphenoxy)benzene dianhydride (HQDPA), 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA), 3,3′-4,4′-diphenylsulphone tetracarboxylic dianhydride (SO2PDA), 3,3′,4,4′-diphenylsulphide tetracarboxylic dianhydride (SPDA), pyromellitic dianhydride (PMDA), and 2,2′-bis(3,4-dicarboxyphenyl)hexafluoroisopropane dianhydride (6FDA) were used as dianhydride. The gas permeabilities of H2, O2 and N2 through the polyimides were measured at temperatures from 30 °C to 90 °C. The results show that as methyl and trifluoromethyl substitution groups densities increase from 7.73 × 10−3 mol cm−3 to 13.50 × 10−3 mol cm−3, the peameability of H2 increases 10-fold at 60% loss of permselectivity of H2/N2; however, the permeability of O2 increases 20-fold at 20% loss of permselectivity of O2/N2. For O2/N2 separation, PMDA-3MPDA has similar performance to 6FDA-3MPDA and 6FDA-4MPDA; all have higher permeabilities for O2 than normal polyimides, and the P(O2)/α(O2/N2) trade-off relationships lie on the upper bound line for polymers. © 1999 Society of Chemical Industry  相似文献   

19.
A semicrystalline copolyimide derived from 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (s‐BPDA), 1,3‐bis‐(4‐aminophenoxy)benzene (TPER), and 4,4′‐oxydianiline (4,4′‐ODA), end capped with phthalic anhydride (PA), was synthesized. Glass fiber reinforced composite was also prepared by impregnating powdery glass fiber with poly(amic acid) followed by solution imidization techniques. This copolyimide displayed a glass transition temperature of 202°C and a melting temperature of 373°C by differential scanning colorimeter (DSC). Crystallization and melting behaviors were investigated under nonisothermal and isothermal crystallization conditions. Double exothermic peaks were found by DSC when the copolyimide was cooled from the melt and multiple melting behaviors can be observed after the coployimide had been isothermally crystallized at different temperatures. Mechanical properties were investigated by dynamical mechanical analysis (DMA) and tensile experiments. The samples were cured at different temperatures and then tested at different temperatures. Results indicated that the copolyimide and the composite showed excellent mechanical properties. Additionally, this copolyimide also showed lower melt viscosity by rheological analysis. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40345.  相似文献   

20.
Thermostable naphthalate-containing copoly(amide-imide)s with inherent viscosity of 0.53–0.96 dL/g were synthesized by reacting diacid-terminated naphthalate monomers with various diisocyanate-terminated polyimide prepolymers. The poly-imide prepolymers were prepared by using 4,4′-diphenylmethane diisocyanate to react with 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, pyromellitic dianhydride, or 3,3′,4,4′-sulfonyl diphthalic anhydride using a direct one-pot method to improve their solubility without sacrificing their thermal properties. The copolymers, except the B-2 and P-2 series, can be dissolved in N,N-dimethylacetamide and 5% lithium chloride or dimethyl sulfoxide at high temperature but are not soluble in pyridine. The solubility of the copolymers is related to their chemical and crystalline structures. Those copolymers with sulfonyl or amorphous structures display good solubility. All the naphthalate-containing copoly(amide-imide)s have glass transition temperatures and melting points in the range of 223–312°C and 348–366°C, respectively, and show a 10% weight-loss temperature of 485–549°C in air and 465–564°C in a nitrogen atmosphere. The tensile strength, elongation at break, and initial modulus of polymer films range from 25–74 MPa, 4–9%, and 0.74–1.60 GPa, respectively. From the X-ray diffraction studies, copolymers of B-2, P-2, and D-2 with symmetrical 2,6-naphthalate amide structure are crystalline, but the others are amorphous. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:1581–1593, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号