首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dynamic rheological behavior was investigated for binary polypropylene (PP) - polyamide-6 (PA-6) and ternary PP-PA-6-glass fiber (GF) blends. The observed trends are related to the blend morphology and the partitioning of the GF within the three component blends. The dynamic and shear viscosity results show a good overlap for the PP homopolymer, within the shear rates studied. The addition of PA-6 and/or glass fibers to the PP causes significant deviations between the two rheological behaviors. This reflects the fibrillation of PA-6 and the orientation of glass fibers during shear rheometry, which reduce the blends' shear viscosity. The effect of PA-6 content on dynamic viscosity is less significant than for shear viscosity, owing to the absence of morphological structuring. The addition of PA-6 to PP increased the principal relaxation time of the binary blends. The addition of GF to these binary blends gave a further increase in the principal relaxation time.  相似文献   

2.
The morphology and rheology of ternary isotactic polypropylene (PP)/polyamide-6 (PA-6)/glass blends is investigated and contrasted with the behavior of two-component (binary) PP/PA-6 blends. Injection molded samples of binary blends exhibit an interlayer slip morphology for both PP and PA-6 as the matrix and the blend shear viscosity is lower than expected from a rule of mixtures. The morphology of ternary blends is dependent on the choice of the matrix phase. In ternary blends with a PA-6 matrix, the PP domains and glass fibers are separately dispersed within the matrix. In ternary blends with a PP matrix, the PA-6 is mainly found surrounding (encapsulating) the glass fibers, and the extent of the interlayer slip morphology is reduced. Variations in glass surface treatment, blending time, and order of addition did not affect the rapid encapsulation of glass by the PA-6. A reduction in blending temperature, below the peak PA-6 melting temperature, hinders encapsulation.  相似文献   

3.
Immiscible polymer blends are interesting multiphase host systems for fillers. Such systems exhibit, within a certain composition limits, either a separate dispersion of the two minor phases or a dispersion of encapsulated filler particles within the minor polymer phase. Both thermodynamic (e.g. interfacial tension) and kinetic (e.g. relative viscosity) considerations determine the morphology developed during the blending process. The effect of interfacial characteristics on the structure‐property relationships of ternary polymer alloys and blends comprising polypropylene (PP), ethylene‐vinyl alcohol copolymer (EVOH) and glass beads (GB), or fibers (GF), was investigated. The system studied was based on a binary PP/EVOH immiscible blend, representing a blend of a semi‐crystalline apolar polymer with a semicrystalline highly polar copolymer. Modification of the interfacial properties was obtained through using silane coupling agents for the EVOH/glass interface and compatibilization using a maleic anhydride grafted PP (MA‐g‐PP) for the PP/EVOH interface. The compatibilizer was added in a procedure aimed to preserves the encapsulated EVOH/glass structure. Blends were prepared by melt extrusion compounding and specimens by injection molding. The morphology was characterized using scanning electron microscopy (SEM) and high resolution SEM (HRSEM), the shear viscosity by capillary rheometry and the thermal behavior using differential scanning calorimetry (DSC). The system studied consisted of filler particles encapsulated by EVOH, with some of the minor EVOH component separately dispersed within the PP matrix. Modification of the interfaces resulted in unique morphologies. The aminosilane glass surface treatment enhanced the encapsulation in the ternary [PP/EVOH]GB blends, resulting in an encapsulated morphology with no separtely dispersed EVOH particles. The addition of a MA‐g‐PP compatibilizer preserves the encapsulated morphology in the ternary blends with some finely dispersed EVOH particles and enhanced PP/EVOH interphase interactions. The viscosity of the binary and ternary blends was closely related to the blend's morphology and the level of shear rate. The treated glass surfaces showed increased viscosity compared to the cleaned glass surfaces in both GB and GF containing ternary blends. Both EVOH and glass serve as nucleating agents for the PP matrix, affecting its crystallization process but not its crystalline structure. The aminosilane glass surface treatment completely inhibited the EVOH crystallization process in the ternary blend. In summary, the structure of the multicomponent blends studied has a significant effect on their behavior as depicted by the rheological and thermal behavior. The structure‐performance relationships in the three‐component blends can be controlled and varied.  相似文献   

4.
The morphology development of polypropylene (PP)/polyethylene terephthalate (PET)/styrene‐ethylene‐butylene‐styrene (SEBS) ternary blends and their fibers were studied by means of scanning electron microscopy (SEM) in conjunction with the melt linear viscoelastic measurements. The morphology of the blends was also predicted by using Harkin's spreading coefficient approach. The samples varying in composition with PP as the major phase and PET and SEBS as the minor phases were considered. Although SEM of the binary blends showed matrix‐dispersed type morphology, the ternary blend samples exhibited a morphological feature in which the dispersed phase formed aggregates consisting of both PET and SEBS particles distributed in the PP matrix. The SEM of the blend samples containing 30 and 40 wt % of total dispersed phase showed an agglomerated structure formed between the aggregates. The SEM of the PP/PET binary fiber blends showed long well‐oriented microfibrils of PET whereas in the ternary blends, the microfibrils were found to have lower aspect ratio with a fraction of the SEBS stuck on the microfibril fracture surfaces. These results were attributed to a core‐shell type morphology in which the PET and SEBS formed the core‐shells distributed in the matrix. The melt viscoelastic behavior of the ternary blends containing less than 30 wt % of the total dispersed phase was found to be similar to the matrix and binary blend samples whereas the samples containing 30 and 40 wt % of dispersed phases exhibited a pronounced viscosity upturn and nonterminal storage modulus in low frequency range. These results were found to be in good agreement with the morphological results. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

5.
Melt rheological properties of the ternary blend of isotactic polypropylene (PP), styreneethylene–butylene–styrene terpolymer (SEBS), and polycarbonate (PC), PP/SEBS/PC, are studied in a wide range of composition, such that PP is the matrix and SEBS and PC are the minor components, with the proportion of one varying from 0 to 30% at various fixed compositions of the other. The respective binary blends, PP/SEBS and PP/PC, studied as the reference systems for interpretation of results on the ternary blends yielded interesting new information about the morphology development and its correlation with melt rheological properties of these binary blends. The studies include the measurement of melt rheological properties on a capillary rheometer in the shear rate range 101–104 s?1 at a fixed temperature of 240°C. The data presented as conventional flow curves are analyzed for the effect of blend composition and shear rate on pseudoplasticity, melt viscosity, and melt elasticity, and role of each individual component is identified. Morphology of dispersed phases of these blends is studied through scanning electron microscopy of the cryogenically fractured and suitably etched surfaces. Variations of morphology with blend composition and shear rate showed interesting correlation with melt rheological properties, which are discussed in detail. An important finding of the morphological studies is that in the PP/SEBS/PC ternary blend the SEBS phase forms two types of morphologies depending on the blend composition and shear rate: (i) simple droplets and (ii) boundary layer at the surface of the PC droplets. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
In this work, a quantitative evaluation on interface situation in HDPE/PA-6/EVOH ternary blends is presented. For this purpose, binary and ternary blends based on HDPE as continuous phase and PA-6 and EVOH as minor components with different weight ratios were prepared. The morphology of the blends was studied by SEM and their mechanical properties were measured. Then, through a theoretical/experimental approach, the tensile characteristics of HDPE/PA-6/EVOH ternary blends are discussed. The interface situation in the prepared blends is probed in such a manner that phenomenological models are successfully extended to the case of ternary blends and their parameters are obtained using available predictive schemes. In addition, the stress–strain curves of all prepared binary and ternary blends comprising different PA-6 to EVOH weight ratios in the minority phase are taken into account to study the yielding and toughening phenomena followed by quantitative evaluation of interfacial adhesion. The results provided support for the fact that the yielding behavior of prepared ternary blends is dependent on the minor component fraction possibly due to the formation of voids at the interface of polymers.  相似文献   

7.
The melt rheological properties of binary uncompatibilized polypropylene–polyamide6 (PP–PA6) blends and ternary blends compatibilized with maleic anhydride‐grafted PP (PP–PP‐g‐MAH–PA6) were studied using a capillary rheometer. The experimental shear viscosities of blends were compared with those calculated from Utracki's relation. The deviation value δ between these two series of data was obtained. In binary PP–PA6 blends, when the compatibility between PP and PA6 was poor, the deformation recovery of dispersed PA6 particles played the dominant role during the capillary flow, the experimental values were smaller than those calculated, and δ was negative. The higher the dispersed phase content, the more deformed the droplets were and the lower the apparent shear viscosity. Also, the absolute value of δ increased with the dispersed phase composition. In ternary PP–PP‐g‐MAH–PA6 systems, when the compatibility between PP and PA6 was enhanced by PP‐g‐MAH, the elongation and break‐up of the dispersed particles played the dominant role, and the experimental values were higher than calculated. It was observed that the higher the dispersion of the PA6 phase, the higher the δ values of the ternary blends and the larger the positive deviation. Unlike uncompatibilized blends, under high shear stress with higher dispersed phase content, the PP‐g‐PA6 copolymer in compatibilized blends was pulled out from the interface and formed independent micelles in the matrix, which resulted in reduced total apparent shear viscosity. The δ value decreased with increasing shear stress. Copyright © 2006 Society of Chemical Industry  相似文献   

8.
Summary Aim of this work was to study the effectiveness of a novel oxazoline-functionalized polypropylene as a compatibilizer for PP/PBT and PP/PA6 blends. This polypropylene-based compatibilizer mixes well with the polypropylene and is capable of reacting with the carboxylic and amine end groups of PBT and PA6. Significant improvements in blend toughness were achieved without reduction in strength and stiffness. These effects were related to stabilized morphology of finely dispersed minor phase well attached to the matrix. The enhanced interfacial interactions between the two phases, in particular at high PBT content were evidenced by increased melt viscosity.  相似文献   

9.
Ternary blends of polypropylene (PP), nylon 6 (N6) and polypropylene grafted with maleic anhydride (PP/N6/PP-g-MAH) as compatibilizer with up to 50 wt% of N6 were investigated. PP-g-MAH content was varied from 2.5 to 10%. Blends of the two polymers PP/N6 (80/20) without the compatibilizer were also prepared using an internal batch mixer and studied. The ternary blends showed different rheological properties at low and high shear rates. The difference depended on the amount of N6 dispersed phase. Co-continuous morphology was observed for the blend containing 50% N6. This blend also exhibited higher viscosity at low shear rate and lower viscosity at high shear rates than the value calculated by the simple rule of mixture. At higher shear rates, viscosity was lower than that given by the rule of mixture for all blend ratios. An increase in viscosity was observed in the 80/20 PP/N6 blend after the concentration of the interfacial agent (PP-g-MAH) was increased. Polyblends containing up to 30% N6 could be successfully melt spun into fibers. DSC results showed that dispersed and matrix phases in the fiber maintained crystallinity comparable to or better than the corresponding values found in the neat fibers. The dispersed phase was found to contain fibrils. By using SEM and LSCM analyses we were able to show that the N6 droplets coalesced during melt spinning which led to the development of fibrillar morphology.  相似文献   

10.
Melt spun drawn fibers were prepared using a ternary blend of PP/PA6/PANI‐complex (polypropylene/polyamide‐6/polyaniline‐complex). Their electrical and mechanical properties were compared to those of binary blend fibers of PP/PANI‐complex. The results of the morphological studies on 55:25:20 PP/PA6/PANI‐complex ternary fibers were found to be in accordance with the predicted morphology for the observed conductivity vs. fiber draw ratio. The scanning electron microscopy (SEM) micrographs of the ternary blend illustrated at least a three‐phase morphology of a matrix/core‐shell dispersed phase style, with widely varying sizes of droplets. This resulted in a dispersed morphology that, in some parts of the blend, approached a bicontinuous/dispersed phase morphology due to coalescence of the small droplets. The matrix was PP and the core‐shell dispersed phase was PA6 and PANI‐complex, in which a part of the PANI‐complex had encapsulated the PA6 phase and the remaining was solved/dispersed in the PA6 core, as later confirmed by X‐ray mapping. When the ternary blend fibers were compared to the binary fibers, the formers were able to combine better conductivity (of an order of 10?3 S cm?1) with a greater tensile strength only at a draw ratio of 5. This indicated that the draw ratio is more critical for the ternary blend fibers, because both conductivity and tensile strength depended on the formation of fibrils from the core‐shell dispersed phase of the PA6/PANI‐complex. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

11.
Long fiber molding materials are expected to play an important role in the near future. This paper describes a series of experiments performed to examine properties of ternary blends containing glass fiber (GF), polyamide (PA), and polypropylene (PP). The continuous glass fiber was impregnated with one of the blend constituent polymers by our specially designed impregnation apparatus and cut into chips of 6 mm length. These chips and the other polymer were used to produce various testing specimens in a twin screw extruder or in injection molding machine. The results indicated that the effect of fiber addition on the mechanical and rheological properties is clearly dependent on the order of impregnation process. In the blends containing the GF/PA + PP, the GFs are preferentially encapsulated with PA, and therefore the mechanical properties are superior to the blends with the GF/PP + PA in which the PP phase is located surrounding the GFs. This improved wetting of fibers by sequential impregnation not only resulted in better properties but also protected the fibers from shear action of the screw, thereby allowing significant increase in average fiber length to be achieved in the injection molding process.  相似文献   

12.
In this study, influences of both component ratio of minor phases and charge sequence on the morphology and mechanical performance in typical ternary blends, polypropylene (PP)/polystyrene (PS)/polyamide-6 (PA6), have been studied. Reactive compatibilization of the blends has been carried out using multi-monomer melt grafted PP with anhydride groups and styrene segments. For uncompatibilized blends, scanning electron microscope (SEM) and selective solvent extraction showed that the blends presented a core–shell morphology with PS as shell and PA6 as core in the PP matrix, in spite of the component ratio and charge sequence. The shell thickened and droplet size decreased with increasing the PS/PA6 component ratio. While for compatibilized blends, the addition of compatibilizers resulted in a significant reduction of the dispersed droplet size and the phase structure of the dispersed phases was greatly dependent on the charge sequence. When the blending of PA6, g-PP, and PP are preceded, the encapsulation structure reversed into the structure of PS phase encapsulated by PA6 phase, which led to better tensile and flexural strength of the blends.  相似文献   

13.
T.S. Omonov  C. Harrats  G. Groeninckx 《Polymer》2005,46(26):841-12336
Phase morphology development in ternary uncompatibilized and reactively compatibilized blends based on polyamide 6 (PA6), polypropylene (PP) and polystyrene (PS) has been investigated. Reactive compatibilization of the blends has been performed using two reactive precursors; maleic anhydride grafted polypropylene (PP-g-MA) and styrene maleic anhydride copolymer (SMA) for PA6/PP and PA6/PS pairs, respectively. For comparison purposes, uncompatibilized and reactively compatibilized PA6/PP and PA6/PS binary blends, were first investigated. All the blends were melt-blended using a co-rotating twin-screw extruder. The phase morphology investigated using scanning electron microscope (SEM) and selective solvent extraction tests revealed that PA6/PP/PS blends having a weight percent composition of 70/15/15 is constituted from polyamide 6 matrix in which are dispersed composite droplets of PP core encapsulated by PS phase. Whereas, a co-continuous three-phase morphology was formed in the blends having a composition of 40/30/30. This morphology has been significantly affected by the reactive compatibilization. In the compatibilized PA6/(PP/PP–MA)/(PS/SMA) blends, PA6 phase was no more continuous but gets finely dispersed in the PS continuous phase. The DSC measurements confirmed the dispersed character of the PA6 phase. Indeed, in the compatibilized PA6/(PP/PP–MA)/(PS/SMA) blends where the PA6 particle size was smaller than 1 μm, the bulk crystallization temperature of PA6 (188 °C) was completely suppressed and a new crystallization peak emerges at a lower temperature of 93 °C as a result of homogeneous nucleation of PA6.  相似文献   

14.
The effect of interfacial characteristics on the structure‐property relationships of ternary polymer alloys and blends comprising polypropylene (PP), ethylene‐vinyl alcohol copolymer (EVOH) and glass beads (GB) or fibers (GF) was investigated. The systems studied were based on a binary PP/EVOH immiscible blend, representing a blend of a semi‐crystalline apolar polymer with a semi‐crystalline highly polar copolymer. The ternary systems studied consisted of filler particles encapsulated by EVOH, with some of the minor EVOH component separately dispersed within the PP matrix. Modification of the interfacial properties was done using silane coupling agents for the EVOH/glass interface and compatibilization using a maleic anhydride grafted PP (MA‐g‐PP) for the PP/EVOH interface. Both glass fillers increased the dynamic modulus and decreased the damping of the neat polymers and of their binary blends, especially in the rubbery region. GF has a more profound effect on both the modulus and the damping. Glass surface treatments and compatibilization have only a marginal effect on the dynamic mechanical behavior of the ternary blends. Yet, compatibilization shifted the polymers' TgS to higher temperatures. Both glass fillers increased the elastic modulus of the binary blends, where GF performed better than GB as a reinforcing agent. GF slightly increased the strength of the binary blends while, GB reduced it. Both fillers reduced the ductility of the binary blends. The blends' mechanical properties were related to the morphology and their components' crystallinity. The compatibilizer increases both stiffness and strength and reduces deformability.  相似文献   

15.
Studies of the microstructure and permeability of extruded ribbons of polypropylene (PP)/ethylene vinyl alcohol copolymer (EVOH) and polyethylene (PE)/polyamide-6 (PA-6) blends have shown that it is possible to control the flow-induced morphology to generate discontinuous overlapping platelets of EVOH or PA-6 dispersed phase in a PP or HDPE matrix phase. The effects of the following factors on morphology development and blend properties were considered: blending sequence, melt temperature, composition, compatibilizer level, die design, screw type, and cooling conditions. The impact properties and interfacial adhesion of laminar blends of PP and EVOH were improved without diminishing the barrier properties. The oxygen and toluene permeability of extruded samples with EVOH content of 25 vol% resembled values obtained with multilayer systems. Processing conditions had a major influence on the morphology of blends of high density polyethylene and polyamide-6 (HDPE/PA-6), and, under special processing conditions, laminar morphology was obtained in this system. The toluene permeability of extruded ribbons of HDPE/PA-6 blends was in the range obtained with multilayer systems.  相似文献   

16.
Summary Reactive blending of 70 vol.-% polypropylene (PP) and 30 vol.-% polyamide-6 (PA-6) was performed in the presence of various amounts of succinic-anhydride-functional elastomers which are immiscible with both blend components. Characteristic morphological feature of the resulting multiphase polymer blends was a continuous polypropylene matrix containing dispersed core/shell microparticles with rigid polyamide-6 core and soft elastomer shell. Accumulation of the elastomer component at the polypropylene/polyamide-6 interface and reaction of the succinic anhydride of the elastomer with the amine-endgroups of PA-6 enhanced PA-6 dispersion and proved to be the key to unusual property synergisms. In contrast to the conventional soft maleicanhydride-grafted EPM elastomer (EPM-g-MAH), the stiffer maleic-anhydride-grafted poly[styrene-b-(ethene-co-butene-1)-b-styrene] (SEBS-g-MAH) was much more efficient as blend compatibilizer and gave PP/PA-6 blends with greatly improved strength and toughness without sacrificing stiffness.  相似文献   

17.
制备HDPE/PA-6阻隔性共混合金工艺条件的研究   总被引:1,自引:0,他引:1  
本文通过测试HDPE、PA 6的流变性能、共混合金的溶剂透过率和PCM,研究了制得阻隔性层状HDPE/PA 6共混合金工艺条件,如加工温度、剪切速率和混合时间等。结果表明:改变加工温度可以调节HDPE/PA 6共混组成粘度比,当PA 6与HDPE的粘度比较大时,能得到PA 6相呈层状分布结构的阻隔性共混合金;剪切作用有利于共混体系两相的分散,适当的剪切速率有利于使PA 6相形成层状结构。较高的剪切速率使PA 6相尺寸减,分散更均匀,但对提高共混物的阻隔性不利;较短的混合时间可以获得具有阻隔性的HDPE/PA 6共混合金体系  相似文献   

18.
Superior impact properties were obtained when maleic anhydride grafted styrene ethylene/butylene styrene block copolymer (SEBS-g-MAH) was used as a compatibilizer in blends of polyamide 6 (PA 6) and isotactic polypropylene (PP), where polyamide was the majority phase and polypropylene the minority phase. The optimum impact properties were achieved when the weight relation PA:PP was 80:20 and 10 wt% SEBS-g-MAH was added. The blend morphology was systematically investigated. Transmission electron microscopy (TEM) indicated that the compatibilizer forms a cellular structure in the PA phase in addition to acting as an interfacial agent between the two polymer phases. In this cellular-like morphology the compatibilizer appears to form the continuous phase, while polyamide and polypropylene form separate dispersions. In microscopy, PA appeared as a fine dispersion and PP as a coarse dispersion. The mechanical properties indicated that in fact PA, too, is continuous, and the blend can be interpreted as possessing a modified semi-interpenetrating network (IPN) structure with separate secondary dispersion of PP. The coarser PP dispersion plays an essential role in impact modification. Binary blends of the compatibilizer and one blend component were also investigated separately. The same cellular structure was observed in the binary PA/SEBS-g-MAH blends, and SEBS-g-MAH again appeared to form the continuous phase when the elastomer concentration was at least 10 to 20 wt%. By contrast, in PP/SEBS-g-MAH only conventional dispersion of elastomeric SEBS-g-MAH was observed up to 40 wt% elastomer. Impact strength was improved and the elastic modulus was lowered in both PA/SEBS-g-MAH and PP/SEBS-g-MAH blends when the elastomer content was increased. The changes in modulus indicate that the semi-IPN-like structure is formed in the binary PA/SEBS-g-MAH blends as well as in the ternary structure.  相似文献   

19.
Melt rheological properties of the blend of isotactic polypropylene (PP) and ethylene propylene diene rubber (EPDM) at varying ratios and of the glass fiber (GF) filled PP and PP/EPDM blend by varying both GF loading and blending ratio of the polyblend matrix are studied. Rheological measurements at 220°C in shear rate range 101?104s?1 were made on a capillary rheometer. Scanning electron micrographs of the extrudates are presented to show the morphology and the alignment of the glass fibers with respect to the flow direction. Variations of pseudoplasticity index, melt viscosity, and melt elasticity with EPDM content in PP/EPDM blend, and with varying GF content at any given composition of the matrix in PP/EPDM/GF ternary system, in the studied range are presented and discussed. Resultes on melt viscosity and melt elasticity show (i) reduced effect of GF at high shear rates on these properties and (ii) upward deviation of melt viscosity versus shear rate curve at low shear rates. A change in flow behavior in presence of GF is observed around a critical shear rate 2 × 103 s?1 and is attributed to the difference of interaction of GF and the dispersed rubber droplets at high and low shear rates. Elastic recovery showed nonequilibrium behavior at low shear rates.  相似文献   

20.
Polymer blends incorporating poly (ethylene terephthalate) (PET), polyamide-6 (PA-6), and a reactive compatibilizer (low molecular weight bisphenol-A epoxy resin—E-44) were prepared with the following E-44 weight percent concentrations: 0, 0.3, 0.6, 1, 3, 5, and 10. The samples was studied by a scanning electron microscope (SEM), a polarizing microscope (PLM), dynamic mechanical thermal analysis (DMTA), wide-angle X-ray diffraction (WAXD), a differential scanning calorimeter (DSC), infrared spectroscopy (IR), and mechanical testing. SEM and PLM showed noticeable changes in both the amorphous region and the crystalline region of the blends. The changes indicated better compatibility between the dispersed phase (PA-6) and the matrix (PET), which was further confirmed by the DMTA test. The WAXD showed that PET and PA-6 crystallized separately and no cocrystallite was found. The melting and crystallization data, obtained by DSC, suggested that the crystallization of the blend was blocked, although the hindered mechanism for the effect of E-44 on PET was different from that on PA-6. The notched impact strength and flexural strength of the PET/PA-6 blends were significantly improved when the content of E-44 was 5 wt % (improved about 500 and 400%, respectively). IR was used to study the reaction among E-44, PET, and PA-6. The result indicated that the grafting reaction and the crosslinking reaction occurred during melt blending. The obvious increase of mechanical properties and the reinforcing and toughening effect were attributed to the formation of the crosslinking net in the blend. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 1505–1515, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号