首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Binary blend of high-density polyethylene (HDPE) and linear low-density polyethylene (LLDPE), prepared by melt mixing in an extruder, in the entire range of blending ratio, is studied for crystallization behavior by differential scanning calorimetry (DSC) and X-ray diffraction measurements. Cocrystallization was evident in the entire range of blend composition, from the single-peak character in both DSC crystallization exotherms and meltingendotherms and the X-ray diffraction peaks. A detailed analysis of DSC crystallization exotherms revealed a systematic effect of the addition of LLDPE on nucleation rate and the subsequently developed crystalline morphology, which could be distinguished in the three regions of blending ratio, viz, the “HDPE-rich blend,” “LLDPE-rich blend,” and the “middle range from 30–70% LLDPE content.” Variations in crystallinity, crystallite size, and d spacing are discussed in terms of differences in molecular structure of the components.  相似文献   

2.
In this work we present an experimental study of shear and apparent elongational behavior of linear low-density (LLDPE) and low-density (LDPE) polyethylene blends by means of capillary rheometry. The characterization of these rheological properties is crucial in the design of a blend that combines the ease of processing of LDPE with the mechanical advantages of the LLDPE. Two different low-density polyethylenes and one common linear low-density polyethylene were used to prepare the blends. The results obtained indicate a strong sensitivity of the rheology of the blend to changes in the molecular weight of the LDPE employed. For the higher molecular weight LDPE, the shear viscosity of the blend was essentially equal to that of the LDPE homopolymer up to a concentration of 25% of LLDPE, whereas the apparent extensional viscosity was appreciably lower. For the lower molecular weight LDPE, the same trend was obtained regarding the shear viscosity, but in this case the apparent extensional viscosity of the blend was somewhat higher than that of the LDPE homopolymer.  相似文献   

3.
The elongational viscosity (EV) of two series of linear low-density polyethylene/low-density polyethylene blends was estimated using an entry flow analysis. The difference, t ? n, between the power law index t of the elongational viscosity and the power law index n of the viscosity, is proportional to the LDPE content for both series of blends investigated. Comparison of the EV of the LLDPE/LDPE blend estimated from the analysis of the flow into an orifice die to the EV value estimated from the analysis of the flow into a capillary die with a flat entry, showed that the difference in geometry had little effect on the EV estimates.  相似文献   

4.
A linear low-density butene copolymer, of overall branch content 3 mol %, has been blended with a low-density polyethylene. The low-density polyethylene has an overall branch content of 5 mol %, including both long and short branches. The two materials were blended in a wide range of compositions and the phase behavior investigated using indirect experimental methods, the examination of quenched blends by differential scanning calorimetry, and transmission electron microscopy. After quenching from temperatures up to 170°C, blends, of almost all compositions, show two crystal populations, separated on a micron scale. It is argued that this implies that the blends were phase separated in the melt before quenching. This behavior shows good agreement with predictions based on previous extensive studies of binary and ternary blends of linear with lightly branched polyethylenes. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65: 1921–1931, 1997  相似文献   

5.
This article presents crystallization kinetics studies on a cocrystallizing polymer highdensity polyethylene (HDPE)/linear lowd-ensity polyethylene (LLDPE) blend. The nonisothermal crystallization exotherms obtained by differential scanning calorimetry (DSC) were analyzed to investigate the effect of cocrystallization on kinetics parameters, namely the Avrami exponent and activation energy. The regular change of Avrami exponent with blend composition from a value of about 3 corresponding to HDPE to a value of 2 corresponding to LLDPE is observed. A sheaf-like crystalline growth with variation of nucleation depending on blend composition is concluded from these results of DSC exotherm analysis in conjunction with the small-angle light scattering observations. The observed variation of activation energy of crystallization with blend composition suggests the role of interaction of side chains and comonomer units present in the LLDPE. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
Low-density polyethylene (LDPE) and also linear low-density polyethylene (LLDPE) resins can be characterized by the degree of strain hardening and down-gaging during elongation. A new method for the determination of the apparent elongational flow characteristics is presented. In a small scale apparatus, a molten monofilament is stretched under nonisothermal conditions similar to those found in tubular film extrusion. Measurement of resistance to elongational flow and apparent elongational strain rates permit the comparison of the process-ability of different resins under specified conditions. The effect of melt temperature and extension ratio are examined. The importance of the molecular structure of both LDPE and LLDPE resins on these properties is also outlined.  相似文献   

7.
The deformation mechanism for linear low-density polythylene (LLDPE) has been studied by electron microscopy, infrared spectroscopy, and pulsed nuclear magnetic resonance. Morphologically, the lamellae in the polar region of a spherulite are aligned in parallel to the drawing direction and then unfolded into microfibrils with drawing. The lamellae in the equatorial region are curved, corrugated, and unfolded partially. Actually, microfibrils are formed with transformation of both lamellae and some amorphous molecules throughout the drawing. Restraint of molecular mobility for the amorphous region increases with drawing, but mobility for the immobile region (lamellae and microfibrils) remains constant. Orientation of the trans-methylene sequences in amorphous regions proceeds with extension. These results can explain the changes of the s-s curve behavior.  相似文献   

8.
In a cooperative testing of polymer blends of polycarbonate (PC) and linear low-density polyethylene (LLDPE), 17 laboratories from six countries contributed measurements of differential scanning calorimetry (DSC) or differential thermal analysis (DTA) and of thermogravimetric analysis (TGA). This work is part of the activity of the VAMAS* Technical Working Party–Polymer Blends (TWP–PB), which provided the samples and coordinated the tests. Thermal analysis proved to be a, rapid means of assessing the miscibility of polymers using small samples. The system PC/LLDPE investigated in this test is found immiscible. The results of this cooperative test are a basis to elaborate a standard procedure for the characterization of polymer blends.  相似文献   

9.
The viscosity of low-density crosslinked polyethylene was studied as a function of gel content and shear rate (3.75–33 sec?1). A simple model relating viscosity with gel content is suggested. It is shown that sol viscosity decreases with cross-linking propagation. The rheological parameters of the sol fraction are changed as a result, and it is natural that this effect should be utilized for flow calculations. Experimental data indicate a high degree of interaction between the sol molecules and the gel, and an experimental technique is presented for measuring it. The rheological parameters of crosslinked polyethylene are closely dependent on the gel content, viscosity and pseudoplasticity increasing with the latter.  相似文献   

10.
The reaction of maleic anhydride (MAH) with molten 2 MI poly(ethylene-co-butene-1) (LLDPE) at 160°C in the presence of peroxyesters (t1/2 < 10 s) as catalysts resulted in the formation of a mixture of cross-linked and trichlorobenzene-soluble LLDPE-g-MAH. The soluble fraction constituted more than 50% of the mixture and had an MI of 0.0 and an MAH content ranging from 0.3 to 1.8 wt %. The presence of tri(nonylphenyl) phosphite (TNPP) in the LLDPE–MAH–t-butyl peroctoate (tBPO) reaction at 160°C increased the MI of the soluble product to 0.7–2. The amount of soluble polymer increased at higher TNPP concentrations while its MAH content ranged from 0.05 to 0.54 wt %, with most contents in the 0.2–0.3 wt % range. The color development that usually occurs in polyolefin–MAH reactions was reduced by the presence of TNPP. However, the reaction of TNPP with the peroxide and from the thermal decomposition thereof reduced the availability of the excited species necessary for the appendage of MAH units onto the polyofin.  相似文献   

11.
Blends of natural rubber (NR) with linear low-density polyethylene (LLDPE) were prepared by melt blending of the materials in a plasticorder mixer at various temperatures around the melting point of LLDPE and at various mixing rates. The optimum processing conditions were a temperature of about 135°C and a mixing rate of 55 rpm. The tensile properties, stress and strain, of the blend had improved significantly with the addition of liquid natural rubber (LNR) into the blend. For blends with compositions around 50% NR, about 10–15% LNR produced the most significant improvement in the physical properties. Welldispersed plastic particles in a rubber matrix were strongly indicated in these samples. Scanning electron micrographs (SEM) of the samples also indicated an increase in the homogeneity of the mixes with the addition of LNR. A single glass transition temperature of about?55°C for the blend was observed via dynamic mechanical analysis (DMA). Interfacial linking between the NR and LLDPE phases was attributed to the presence of active groups on the polyisoprene chain of LNR, which induced the interphase reaction between the NR and LLDPE phases. © 1995 John Wiley & Sons, Inc.  相似文献   

12.
The binary blend of high-density polyethylene (HDPE) and linear low-density polyethylene (LLDPE) in the range of composition from 100% HDPE to 100% LLDPE has been investigated for tensile and flexural properties and the morphology in the deformed state on tensile fracture. Tensile properties (initial modulus, yield stress, and elongation-at-yield, ultimate tensile strength and elongation-at-break, and work of yield and work of rupture) and flexural properties (flexural modulus and flexural yield stress) are studied as a function of blend composition. Behavior, in terms of these properties, is distinguishable in three zones of blend composition, viz. (i) HDPE-rich blend, (ii) LLDPE-rich blend, and (iii) the middle zone. In zones (i) and (ii), the variations of these properties are more or less linear, whereas in the middle region [i.e., zone (iii)], there is a reversal of trends in variation or sometimes a behavior opposite to the expected one. The results are explained on the basis of the effects of cocrystallization and the presence of octene-containing segments in the amorphous phase. Scanning electron micrographs of the tensile fracture surfaces are presented to illustrate the occurrence of transverse bands interconnecting the fibrils.  相似文献   

13.
Possibility of hybrid catalytic systems for ethylene dimerization and copolymerization including Ti (On-Bu)4, (C5H5)4Zr, and methylaluminoxane formation has been proved. Properties of copolymers formed in the presence of these systems were studied. It was shown that the main advantage of new catalytic systems is their flexibility that allows them to be used for production of a wide assortment of polyethylene. Developed catalytic systems make possible the production of polyethylene all branded assortment from ethylene as the only feedstock according to the one-reactor technological scheme.  相似文献   

14.
This paper describes characterizations performed on two types of polyethylene T-Joints as well as the starting resin from which they were manufactured. It was found that the melt flow rate of material taken from the two types of joints differed from that of the starting resin and differed from each other by as much as a factor of two. Investigation of the environmental stress-crack resistance (ESCR) and uniaxial creep behavior of material from the two joints revealed further significant differences in behavior between the two joints. These observations lead to the conclusion that subtle differences in the processing conditions can result in significant differences in the long-term mechanical behavior.  相似文献   

15.
In considering the processing characteristics of typical linear low-density polyethylenes, it is very likely that the nature and amount of the “high-density” portion of the short chain branching distribution has a strong effect on rheological behavior. In this study, highdensity resins of varying molecular weight were blended into a linear low-density polyethylene base resin to determine the effect on viscosity, elasticity, and onset of haze. It was determined that it is not only the high-molecular-weight characteristics of the high-density portion but also the linear nature of the molecules that has a negative effect on processability. © 1993 John Wiley & Sons, Inc.  相似文献   

16.
Effects of blending low-density polyethylene (LDPE) with linear low-density polyethylene (LLDPE) were studied on extrusion blown films. The tensile strength, the tear strength, the elongation at break, as well as haze showed more or less additivity between the properties of LDPE and LLDPE except in the range of 20–40% where synergistic effects were observed. The LLDPE had higher tensile strength and elongation at break than did the LDPE in both test directions, as well as higher tear strength in the transverse direction. The impact energies of the LLDPE and the LDPE were approximately the same, but the tear strength of the LLDPE was lower than that of LDPE in the machine direction. The comparative mechanical properties strongly depend on the processing conditions and structural parameters such as the molecular weight and the molecular weight distribution of both classes of materials. The LLDPE in this study had a higher molecular weight in comparison to the LDPE of the study, as implied from its lower melt flow index (MFI) in comparison to that of the LDPE. The effects of processing conditions such as the blow-up ratio (BUR) and the draw-down ratio (DDR) were also studied at 20/80 (LLDPE/LDPE) ratio. Tensile strength, elongation at break, and tear strength in both directions became equalized, and the impact energy decreased as the BUR and the DDR approached each other.  相似文献   

17.
A comparison is made of flow curves for the extrusion of a LLDPE melt through clean metal capillaries and when overcoated by fluoropolymer (FE) process aids. Characteristics differences between the flow traces include a shear-rate dependent reduction in flow resistance due to the presence of FE at the die surface. The FE preferentially wets high energy die surfaces, but interacts very weakly with LLDPE melts, thus acting as a lubricant at the polymer/stationary phase interface, and promoting the slip of LLDPE melts. Arguments are presented showing that the percent slippage time must attain an equilibrium value at high extrusion rates. Flow curves for extrusion through FE-coated dies are divided into distinct regions and the slopes of these have been rationalized by equations that combined the concepts of molecular dynamics and of adhesive failure at the die wall/polymer interface as the origins of slip-stick flow.  相似文献   

18.
Two low-density polyethylenes, a linear low-pressure (LLDPE) and a branched high-pressure (LDPE), have been compared. Their shear and extensional behavior and melt fracture phenomena have been investigated, and some mechanical and optical properties of their blown films have been measured. The rheological analysis showed major differences between the samples, both in shear viscosity and in elongational viscosity. The LLDPE exhibited two types of melt fracture, the first of which—a fine scale extrudate roughness—was not shown by the LDPE and appeared at a very low shear rate. The concomitance in LLDPE of a high shear viscosity and a low elongational viscosity and the presence of melt fracture at low shear rate resulted in its more difficult processing into film. The mechanical properties of the LLDPE film approached those of high-density polyethylene while the optical characteristics were in the range of LDPE. Such a coexistence of properties makes LLDPE an interesting material for film production.  相似文献   

19.
The crystallization studies revealed that the high-density polyethylene (HDPE) and linear low-density polyethylene (LLDPE) formed strong cocrystalline mass when they were melt blended in a single screw extruder. The progress of crystallization was observed through a small-angle light scattering instrument, scanning electron microscope, and differential scanning calorimeter. Analysis showed that these constituents followed individual nucleation and combine growth of crystallites in blends. The growth of crystallites all through the blend compositions were two-dimensional. Interestingly, the crystallites resembled each other for a particular blend composition; however, they differ widely as the composition changes. The rate of crystallization depends greatly to the number of crystallites and their interfacial boundary in contact with the amorphous phase pool. The t1/2 and percentage of crystallinity showed a mutually exclusive trend and were seen to be varied in the following three regions of blend composition: the HDPE-rich, the LLDPE-rich, and the middle region of blend composition. The percentage of crystallinity decreases in both the HDPE-rich and LLDPE-rich blends, and it showed a plateau value in the middle region of blend composition. The t1/2 showed opposite trend to that of % crystallinity. © 1998 John Wiley & Sons, Inc. J. Appl. Polym. Sci. 69: 2599–2607, 1998  相似文献   

20.
Blends of linear low-density polyethylene (LLDPE) and linear low-density polyethylene grafted maleic anhydride (LLDPE-gMA) were prepared by melt mixing and then coextruded as external layers, with a central layer of polyamide (PA) on three-layer coextruded flat films. Blends with contents of 0% to 55 wt% of maleated LLDPE, on the external layers, were analyzed. The T-peel strength and oxygen and water vapor transmission rate of the films were measured. The surfaces of the peeled films were characterized using attenuated total reflection infrared spectroscopy (FTIR-ATR) and scanning electron microscopy (SEM). The observed increase in T-peel strength of the films with 10% and higher levels of maleated LLDPE in the blend suggests good interfacial adhesion between layers. This sharp increase in peel strength appears to be associated, besides interdiffusion, with specific interactions between polymers, as the bond formation between maleic anhydride and the polyamide end groups by in situ block copolymer formation across the interface. No significant modifications in oxygen barrier properties of the films were observed; however, the use of higher contents of LLDPEgMA, even though it increases the adhesion performance, also increases the water vapor transmission rate by a reduction in the degree of crystallinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号