首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
研究了粉煤灰空心玻璃微珠(HGB)粒径对高密度聚乙烯(HDPE)力学性能的影响。结果表明:粒径小的HGB填充HDPE具有较高的拉伸强度、断裂伸长率、弯曲强度和冲击强度,而且HGB的加入对HDPE的热稳定性影响不明显。  相似文献   

2.
A commercial grade of isotactic polypropylene (PP) was used to study the mechanical properties and morphologies of the PP composites filled with four sizes of glass bead particles. The glass bead particles used were with average particle sizes of 15 μm (GB15), 10 μm (GB10), 5 μm (GB5), and 2.5 μm (GB2.5), respectively. It was clear that the glass bead size was an important factor on the determination of mechanical properties of the composites. As a whole, in view of the scatter in the data, under the condition of same filler content, the yield strength and impact strength of the composites filled with smaller glass bead particles was higher than those of the composites filled with bigger ones. And the flexural strength and modulus of the composites filled with GB10, GB5, or GB2.5 particles could be regarded as the same. The flexural strength and modulus of the composites filled with GB15 particles were higher than those of the composites filled with other three sizes of particles. Among four sizes of glass bead particles, GB2.5 had the best toughening effect to improve the impact strength of PP matrix. And the major toughening mechanism of the PP/GB2.5 composites was the pinning effect introduced by GB2.5. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers  相似文献   

3.
This paper presents a comparison between particulate filled (SiC particles) and unfilled glass polyester composites on the basis of their mechanical and thermo-mechanical properties. The results show that particulate filled composites have a decreasing trend in mechanical properties when compared to the unfilled glass polyester composites. In particulate filled composites, the tensile and flexural strength of the composites decrease with the addition of 10 wt.-% SiC particles but increase with 20 wt.-% SiC particles. In the case of the unfilled glass polyester composite, the tensile and flexural strength of the composites increase with an increase in the fiber loading. However, higher values of tensile strength and flexural strength of particulate filled glass polyester were found than that of the unfilled glass polyester composite. In the case of thermo-mechanical and thermal properties, the particulate filled composites show better dynamical and thermal properties when compared to the unfilled glass polyester composites. The mechanical and thermal properties (i.e. thermal conductivity) are also calculated using FE modeling (ANSYS software) and the results from this simulation shows good agreement with the experimental results.  相似文献   

4.
影响中空玻璃微珠填充PS复合材料性能的因素   总被引:1,自引:0,他引:1  
研究了中空玻璃微珠的表面改性和粒径分布,苯乙烯-丁二烯-苯乙烯弹性体(SBS)的加入对聚苯乙烯(PS)/中空玻璃微珠复合材料力学性能的影响.结果表明:硅烷偶联剂KH550对中空玻璃微珠的表面改性效果优于KH560;粒径分布窄的中空玻璃微珠填充PS复合材料具有较高的拉伸强度、弯曲强度和冲击强度:SBS的加入可以提高复合材料的力学性能,尤其可以大幅提高简支梁缺口冲击强度.  相似文献   

5.
Hybridized zirconium amorphous calcium phosphate (ACP)-filled methacrylate composites make good calcium and phosphate releasing materials for anti-demineralizing/remineralizing applications with low mechanical demands. The objective of this study was to assess the effect of the particle size of the filler on the mechanical properties of these composites. Photo-curable resins were formulated from ethoxylated bisphenol A dimethacrylate, triethylene glycol dimethacrylate, 2-hydroxyethyl methacrylate and methacryloxyethyl phthalate. Camphorquinone and ethyl-4-N,N-dimethylaminobenzoate were utilized as components of the photoinitiator system. After 2 h of mechanical milling in isopropanol, an approximate 64 % reduction in the median particle diameter was observed [27.48 μm vs. 9.98 μm] for unmilled and milled wet ACP, respectively. Dry ACP showed a 43 % reduction in particle size from pre- to post-milling. As well as dry composites, those that had been immersed in aqueous media were evaluated for their Young's Modulus, water sorption, biaxial tensile, three-point flexural and diametral tensile strength. Mechanically milling the filler increased the volume of fine particles in the composite specimens, resulting in a more homogeneous intra-composite distribution of ACP and a reduction in voids. In turn, less water diffused into the milled composites upon aqueous exposure, and they showed a marked improvement in biaxial flexure strength and a moderate improvement in flexural strength over composites with unmilled ACP. The demonstrated improvement in the mechanical stability of milled Zr-ACP composites may help in extending their dental applicability.  相似文献   

6.
《Ceramics International》2020,46(3):2624-2629
TaC/SiC composites with 5 wt% SiC addition were densified by plasma-activated sintering (PAS) at 1500–1800 °C for 5 min under 30 MPa. The effects of plasma-activated sintering on microstructures, densification and mechanical properties of the composites were investigated. The results showed that TaC/SiC composites achieved a relative density more than 99% of the theoretical density at 1600 °C. A low eutectic liquid phase generated by the oxide on the particle surface was observed in the composite to realize a relatively low temperature sintering densification. While the TaC particle size decreased insignificantly with increasing sintering temperature, the transformation of morphology of SiC particles changing from equiaxed to elongated grain was activated, accompanying with a slight particle size decreasing of the SiC phase, thus promoting a relatively high flexural strength of 550 MPa under 1800 °C. Besides, some ultra-fine 2 nm Ta2Si was observed in the glassy pockets, strengthening the amorphous phase and thus increasing the flexural strength.  相似文献   

7.
In this study, glass flakes were incorporated into the spherical nanosilica component of the dental composites and its effect on the mechanical properties of these composites was investigated. To achieve a good interfacial adhesion between matrix resin and fillers, the particles were surface treated with a silane coupling agent (γ-MPS). Composites with different plate-like and spherical nanoparticle contents were prepared and their mechanical properties, including flexural strength, flexural modulus and fracture toughness were measured. The morphology of the particles and fracture surface of the composites were studied by SEM. The distribution of the flakes in the composite was also monitored using EDXA. Statistical analysis of the data was performed with ANOVA and the Tukey’s post hoc test was at a significance level of 0.05. The results showed that the flexural modulus and fracture toughness of specimens were improved with increasing the glass flake content up to 15 vol % which then declined upon further increase due to the stacking of the flakes on each other. A good interfacial adhesion was observed between matrix resin and particles in the SEM micrographs. The results of this study suggest that incorporation of glass flakes into the dental composites containing spherical nanosilica particles may enhance their mechanical properties.  相似文献   

8.
This article investigates the effects of fiber length and maleated polymers on the mechanical properties and foaming behavior of cellulose fiber reinforced high‐density polyethylene composites. The results from the mechanical tests suggested that long fibers provided higher flexural and impact properties than short fibers. In addition, the maleated high‐density polyethylene increased flexural strength significantly, while the maleated thermoplastic elastormers increased notched Izod impact strength dramatically. On the other hand, the results from the extrusion foaming indicated that the composites with long and short fibers demonstrated similar cell morphology, i.e., a similar average cell size and cell size distribution. However, the addition of maleated high‐density polyethylene caused an increase of the average cell size and cell size distribution in the composites. POLYM. ENG. SCI., 2009. © 2009 Society of Plastics Engineers  相似文献   

9.
安群力 《中国塑料》2012,26(9):42-46
在玻璃布增强氰酸酯树脂(CE)基复合材料中加入氮化硼(BN)粒子,制得CE/玻璃布/BN复合材料。研究了BN粒子含量对复合材料性能的影响。结果表明,经偶联剂处理的BN粒子使体系凝胶时间缩短,反应活性略有提高。BN粒子的加入可以明显提高复合材料的弯曲强度和层间剪切强度,在BN加入量为8 %时,复合材料的弯曲强度和层间剪切强度达到最大值,分别提高了5 %和36 %。加入BN粒子后,复合材料的起始热分解温度都较未填充体系有所提高,耐热指数升高,热稳定性相应提高。  相似文献   

10.
The mechanical properties of alumina have been successfully improved by adding isolated boron carbide particles of two different shapes. A K Ic of 7.26 ± 0.20 MPa · m1/2 for alumina—boron carbide whiskerlike composites and of 5.27 ± 0.12 MPa · m1/2 alumina—boron carbide shardlike particle composites has been achieved. The fracture toughness of these composites is dependent on the volume fraction of the boron carbide particles as well as their size and shape. The flexural strength is also appreciably enhanced to a constant value with from 5 to 20 vol% boron carbide additions. The whiskerlike particles increase the flexural strength by 25% and the shardlike particles produce a 47% improvement.  相似文献   

11.
If a low weight percentage of crude fine fillers can improve properties of polymer materials directly without complicated chemical treatment process involved, it will be significant for many industrial applications. Our previous study indicated that a kind of Cancun natural sand could be an effective filler material for polymer composites. In this current work, the epoxy composites reinforced by this kind of natural sand particles were prepared and thermal and mechanical properties of the composites containing up to 5 wt % of the sand particles were characterized. Results showed that the highest flexural strength appears in the epoxy composite containing 1 wt % sand particles. A damage model was used to interpret the flexural properties, which showed an acceptable agreement with the experimental results. The glass transition temperature, high temperature storage modulus, and dimensional stability of the sand/epoxy composites monotonically increased with the addition of the sand particles. The sand particle/epoxy composites also displayed a noticeable enhancement in thermal conductivity. Theoretical analysis showed that in addition to conduction, other heat transport mechanisms played roles in the improved heat transmission through the composites. As a natural porous micron-scale material, Cancun sand has the potential for applications in cost-effective composites with enhanced mechanical and thermal properties. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

12.
Polycaprolactone (PCL)/calcium sulfate (CS) particle and whisker composites were prepared by coprecipitation method and studied by evaluating their microstructure, crystallization, and mechanical properties. Results show that both of the CS whisker and particle dispersed in PCL can reduce the spherulite size of PCL and improve the regularity of the spherulite. The nucleation effect of the CS whisker is stronger than that of the CS particle. Mechanical properties of PCL were obviously improved by both of the particle and whisker addition. The flexural modulus and impact strength of the whisker composites are higher than that of the particle composites, which could be explained by the interfacial debonding mechanism. On the basis of the crystallization and mechanical studies, it is found that the size of spherulites and the concentration of CS particles and whiskers have played an important role in the improvement in mechanical properties of the composite. POLYM. COMPOS. 2012. © 2012 Society of Plastics Engineers  相似文献   

13.
Pliable and bioactive composites made of hydroxyapatite (HAP) and ethylene vinyl acetate (EVA) copolymer were developed for the repair of defective cranium. This article describes the mechanical properties of HAP–EVA composites. The effects of HAP particle size and morphology of HAP on the properties of resultant composites were investigated using various techniques. It was found that the composites containing smaller HAP particles had higher values of tensile modulus, flexural modulus, and impact strength. Examination of the fracture surfaces revealed that only a mechanical bond existed between the filler and the matrix. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

14.
Si3N4 matrix composites reinforced by SiC whiskers, SiC particles, or both were fabricated using the hot-pressing technique. The mechanical properties of the composites containing various amounts of these SiC reinforcing materials and different sizes of SiC particles were investigated. Fracture toughness of the composites was significantly improved by introducing SiC whiskers and particles together, compared with that obtained by adding SiC whiskers or SiC particles alone. On increasing the size of the added SiC particles, the fracture toughness of the composites reinforced by both whiskers and particles was increased. Their fracture toughness also showed a strong dependence on the amount of SiC particles (average size 40 μm) and was a maximum at the particle content of 10 vol%. The maximum fracture toughness of these composites was 10.5 MPa·m1/2 and the flexural strength was 550 MPa after addition of 20 vol% of SiC whiskers and 10 vol% of SiC particles having an average particle size of 40 μm. These mechanical properties were almost constant from room temperature to temperatures around 1000°C. Fracture surface observations revealed that the reinforcing mechanisms acting in these composites were crack deflection and crack branching by SiC particles and pullout of SiC whiskers.  相似文献   

15.
In this study, the effects of fly ash in composites fabricated by injection molding are examined. Taguchi design of experiment was first utilized to estimate the effects different injection molding conditions and content ratios of fly ash have on a linear low‐density polyethylene (LLDPE)‐fly ash composite. The results reveal that the content of fly ash is highly significant and contributive to the shrinkage ratio and bending strength. For these reasons, LLDPE and polypropylene (PP) composites with different size particles of fly ash were fabricated and the mechanical properties were investigated. The particle size was changed by grinding fly ash with a planetarium ball mill. The shrinkage ratio, bending strength and flexural modulus of LLDPE composites containing raw fly ash were found to improve. The shrinkage ratio and flexural modulus of PP composites containing ground fly ash were also found to improve. Homogenization analysis using the finite element method was then used to calculate the Von Mises stress distributions and homogenized elastic matrix of PP composites containing ground fly ash. The homogenized elastic matrix was used to validate the experimental flexural modulus. The results show that the homogenized elastic matrix is in good agreement with the experimental flexural modulus. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

16.
A novel process has been developed to manufacture poly(methyl methacrylate) (PMMA) pultruded parts. The mechanical and dynamic mechanical properties, environmental effects, postformability of pultruded composites and properties of various fiber (glass, carbon and Kevlar 49 aramid fiber) reinforced PMMA composites have been studied. Results show that the mechanical and thermal properties (i.e. tensile strength, flexural strength and modulus, impact strength and HDT) increase with fiber content. Kevlar fiber/PMMA composites possess the highest impact strength and HDT, while carbon fiber/PMMA composites show the highest tensile strength, tensile and flexural modulus, and glass fiber/PMMA composites show the highest flexural strength. Experimental tensile strengths of all composites except carbon fiber/PMMA composites follow the rule of mixtures. The deviation of carbon fiber/PMMA composite is due to the fiber breakage during processing. Pultruded glass fiber reinforced PMMA composites exhibit good weather resistance. They can be postformed by thermoforming, and mechanical properties can be improved by postforming. The dynamic shear storage modulus (G′) of pultruded glass fiber reinforced PMMA composites increased with decreasing pulling rate, and G′ was higher than that of pultruded Nylon 6 and polyester composites.  相似文献   

17.
《Ceramics International》2017,43(2):1895-1903
This paper examined theoretically and experimentally packing behavior, sintering behavior and compressive mechanical properties of sintered bodies of the bimodal particle size system of 80 vol% large particles (351 nm diameter)–20 vol% small particles (156 nm diameter). The increased packing density as compared with the mono size system was explained by the packing of small particles in 6-coordinated pore spaces among large particles owing to the similar size relation between 6-coordinated spherical pore and small particle. The sintering between adjacent large particles dominated the whole shrinkage of the powder compact of the bimodal particle size system. However, the bimodal particle size system has a high grain growth rate because of the different curvatures of adjacent small and large particles. The derived theoretical equations for the compressive strengths of both mono size system and bimodal particle size system suggest that the increase in the grain boundary area and relative density by sintering dominate the compressive strength of a sintered porous alumina. The experimental compressive strengths were well explained by the proposed theoretical models. The strength of the bimodal particle size system was high at low sintering temperatures but was low at high sintering temperatures as compared with that of mono size system of large particles. This was explained by mainly the change of grain boundary area with grain growth. The stress–strain relationship of the bimodal particle size system showed an unique pseudo-ductile property. This was well explained by the curved inside stress distribution along the sample height. The inside stress decreases toward the bottom layer. The fracture of one layer of sintered grains over the top surface proceeds continuously with compressive time along the sample height when an applied stress reaches the critical fracture strength.  相似文献   

18.
Dilatation of specimens is measured during tensile tests to investigate the mechanical response of particulate-filled amorphous networks in the glassy state. The effects of particle size, volume fraction of filler, coupling agents, and crosslink density of the matrix on the mechanical-dilatational behavior are studied on model composites of glass-bead-filled polyurethanes. It is found that the stress-strain response of composites with untreated glass beads shows nonlinearity and subsequent yielding due to dewetting of particles from the matrix. In contrast, composites containing particles coated with a comupling agent fracture in a brittle manner, showing no significant nonlinearity and dewetting. Coated particles provide a higher tensile strength, but a lower strain at fracture, than uncoated particles. The volume fraction of the filler has an effect on Young's modulus, which is independent of the degree of coupling between the matrix and the filler. Tensile strength and strain at break decrease with increasing filler content for coated and uncoated particles. No strong effect of particle size is observed on either the tensile modulus or the dilatational behavior in the 25 μm to 160 μm diameter range. However, strain at break increases with decreasing particle size. When the accompanying yield phenomena shift to smaller strains, and a transition to brittle fracture takes place at high crosslink densities.  相似文献   

19.
The main objective of this work was to investigate the effect of reinforcements at different scales on the mechanical properties of natural fiber-reinforced composites. Pure jute and interlaminar hybrid jute/glass fiber-reinforced polymer composites were fabricated. Different types of fillers in two weight fractions (1 and 3 wt. %) were used as second reinforcements in the hybrid jute/glass composites. Tensile, flexural, and impact tests were performed. It was found that the macroscale inter-play hybridization significantly improved the mechanical properties of the pure jute fiber based composites. When the fillers are used as second hybridization, the modified composites presented higher mechanical properties when compared to pure jute composites. However, the effect of fillers on the mechanical properties of the hybrid composites presented various trends due to the interaction between several factors (i.e., particle scale, content, and nature), which cannot always be separated. Increasing the synthetic filler content improved the tensile properties of the filled hybrid composites, while increasing the natural filler content worsen the tensile properties. The flexural strength of the multiscale hybrid composites was improved, while the impact properties were negatively affected.  相似文献   

20.
木粉对PVC木塑复合材料力学性能影响   总被引:8,自引:0,他引:8  
采用电镜扫描观察了3种木粉的纤维细胞尺寸及其木粉微观形态。研究了木粉粒度、微观特性以及木粉添加量对了聚氯乙烯(PVC)木塑复合材料力学性能的影响。结果表明,木粉表面裸露的微细纤维增加和粒度减小,有助于提高木塑复合材料力学强度;加入少量木粉使木塑复合材料力学性能降低,但随着木粉添加量的增大,木塑复合材料的抗弯性能和拉伸强度上升;木塑复合材料的冲击强度随木粉含量增加而下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号