首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用碱、高锰酸钾及热对剑麻纤维布进行了表面处理,并由真空辅助树脂传递模塑成型(VARTM)工艺制备了剑麻纤维布增强不饱和聚酯树脂复合材料。通过对复合材料的力学性能及吸水性的测试,研究了不同剑麻纤维布表面处理对其不饱和聚酯树脂复合材料性能的影响。结果表明:经过碱处理,复合材料的拉伸、弯曲,冲击强度提高最大,可分别提高26.5%,16.5%和22.6%,吸水率降低了47.5%。对剑麻纤维布进行表面处理可使复合材料的界面性能得到改善,力学性能提高,吸水性降低。  相似文献   

2.
This article concerns the effectiveness of various types and degrees of surface modification of sisal fibers involving dewaxing, alkali treatment, bleaching cyanoethylation and viny1 grafting in enhancing the mechanical properties, such as tensile, flexural and impact strength, of sisal‐polyester biocomposites. The mechanical properties are optimum at a fiber loading of 30 wt%. Among all modifications, cyanoethylation and alkali treatment result in improved properties of the biocomposites. Cyanoethylated sisal‐polyester composite exhibited maximum tensile strength (84.29 MPa). The alkali treated sisal‐polyester composite exhibited best flexural (153.94 MPa) and impac strength (197.88 J/m), which are, respectively, 21.8% and 20.9% higher than the corresponding mechanical properties of the untreated sisal‐polyester composites. In the case of vinyl grafting, acrylonitrile (AN)‐grafted sisal‐polyester composites show better mechanical properties than methyl‐methacrylate (MMA)‐grafted sisal composites. Scanning electron microscopic studies were carried out to analyze the fiber‐matrix interaction in various surface‐modified sisal‐polyester composites.  相似文献   

3.
Tire rubber particles were mixed randomly with short sisal fibers and hot pressed. Sisal fibers were used as received, mercerized, and mercerized/acetylated. The fibers were characterized by scanning electron microscopy (SEM), thermal gravimetry analysis (TGA), infrared spectroscopy (FTIR), water sorption, and mechanical properties. Thermal stability of the mercerized/acetylated fibers improves (from 200 to 300°C) with respect to the raw fibers, and water sorption is ~ 20% smaller than for the raw and the mercerized fibers. Tensile strength is unchanged after the chemical treatments. Water sorption, mechanical properties, and SEM evaluated the performance of the tire rubber composites. All composites showed enhanced elastic modulus; increase is dependent on fiber load. Smallest water sorption was obtained in composites with the mercerized/acetylated fibers. With these fibers at 10% load, the best results were obtained with the smaller tire rubber particles (320 μm) and at 5% load with the bigger (740 μm) tire rubber particles. Both composites showed ~ 50% increase in tensile strength when compared to similar composites with raw fibers. SEM of the surface of fracture showed that the adhesion between fiber and rubber was enhanced after both chemical treatments. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2507–2515, 2003  相似文献   

4.
In this work, composites based on a phenolic matrix and untreated‐ and treated sisal fibers were prepared. The treated sisal fibers used were those reacted with NaOH 2% solution and esterified using benzophenonetetracarboxylic dianhydride (BTDA). These treated fibers were modified with the objective of improving the adhesion of the fiber–matrix interface, which in turn influences the properties of the composites. BTDA was chosen as the esterifying agent to take advantage of the possibility of introducing the polar and aromatic groups that are also present in the matrix structure into the surface of the fiber, which could then intensify the interactions occurring in the fiber–matrix interface. The fibers were then analyzed by SEM and FTIR to ascertain their chemical composition. The results showed that the fibers had been successfully modified. The composites (reinforced with 15%, w/w of 3.0 cm length sisal fiber randomly distributed) were characterized by SEM, impact strength, and water absorption capacity. In the tests conducted, the response of the composites was affected both by properties of the matrix and the fibers, besides the interfacial properties of the fiber–matrix. Overall, the results showed that the fiber treatment resulted in a composite that was less hygroscopic although with somewhat lower impact strength, when compared with the composite reinforced with untreated sisal fibers. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

5.
The aim of this paper is to evaluate the mechanical and thermal properties of sisal fiber reinforced epoxy matrix composites as a function of modification of sisal fiber by using mercerization and silane treatments. The changes introduced by the treatments on the chemical structure of sisal fibers have been analyzed by infrared spectroscopy (FTIR). Thermal behavior of both sisal fibers and composites has been studied by thermogravimetric analysis (TGA). Both treatments clearly enhanced thermal performance and also mechanical properties of fibers, being other physical properties also modified. Mercerization, above all when combined with silanization, led to significant enhancement on mechanical properties of composites as a consequence of increasing mechanical properties of fibers and improving fiber/matrix adhesion. POLYM. COMPOS., 26:121–127, 2005. © 2005 Society of Plastics Engineers  相似文献   

6.
The mechanical performance of short randomly oriented banana and sisal hybrid fiber reinforced polyester composites was investigated with reference to the relative volume fraction of the two fibers at a constant total fiber loading of 0.40 volume fraction (Vf), keeping banana as the skin material and sisal as the core material. A positive hybrid effect is observed in the flexural strength and flexural modulus of the hybrid composites. The tensile strength of the composites showed a positive hybrid effect when the relative volume fraction of the two fibers was varied, and maximum tensile strength was found to be in the hybrid composite having a ratio of banana and sisal 4 : 1. The impact strength of the composites was increased with increasing volume fraction of sisal. However, a negative hybrid effect is observed when the impact strength of the composites is considered. Keeping the relative volume fraction of the two fibers constant, that is, banana : sisal = 0.32 : 0.08 (i.e., 4 : 1), the fiber loading was optimized and different layering patterns were investigated. The impact strength of the composites was increased with fiber loading. Tensile and flexural properties were found to be better at 0.40 Vf. In the case of different layering patterns, the highest flexural strength was observed for the bilayer composites. Compared to other composites, the tensile properties were slightly higher for the composite having banana as the skin material and sisal as the core material. Scanning electron micrographs of the tensile and impact fracture surfaces of the hybrid composites having volume fraction 0.20 and 0.40 Vf were studied. The experimental tensile strength and tensile modulus of hybrid composites were compared with those of theoretical predictions. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 1699–1709, 2005  相似文献   

7.
Low‐density polyethylene (LDPE)‐coated sisal fiber prepreg was prepared by using solution coating process. These coated fiber prepregs were consolidated to make composites having different weight fraction of sisal fibers in a hot compression‐molding machine. This experimental study reveals that higher loading of sisal fiber up to 57wt% in LDPE–sisal composites is possible by this technique. Mechanical and abrasive wear characteristics of these composites were determined. The tensile strength of composites increased with the increase in sisal fiber concentration. Coating thickness of LDPE was varied by changing the viscosity of LDPE–xylene solution that manifested to different weight fraction of fiber in sisal–LDPE composites. Mechanical, dynamic mechanical, and abrasive wear characteristics of these composites were determined. The tensile strength and modulus of sisal composites reached to 17.4 and 265 MPa, respectively, as compared to 7.1 and 33MPa of LDPE. Storage modulus of sisal composites LD57 reached to 2.7 × 109 MPa at 40°C as compared to 8.1 × 108 MPa of LDPE. Abrasive wear properties of LDPE and its composites were determined under multi‐pass mode; pure LDPE showed minimum specific wear rate. The specific wear rate of composites decreased with the sliding distance. Increase of coated sisal fiber content increased the specific wear rate at all the sliding distances, which has been explained on the basis of worn surface microstructures observed by using SEM. POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

8.
Efficacy evaluation of various coupling-agent-treated sisal fibers was made by contact angle measurements and Fourier transform infrared spectroscopy. It was found that high contact angle and reduced hydroxyl groups on titanate-treated fibers favor its better hydrophobicity over the other treatments. The presence of adsorbed layer of coupling agent on the fiber surface was ascertained by appearance, shifting, and decreased intensity of absorption bands. The lowest polar component of surface-free energy for N-substituted methacrylamide-treated fiber indicates the formation of ordered layers of its organofunctionality at the surface. The reason for enhanced interaction between sisal fiber and N-substituted methacrylamide is suggested by the formation of hydrogen bond, besides extracting a surface-active proton from the fiber surface by alkoxy group to form a covalent bond. An optimum treating condition of fiber for effective adsorptive interaction has been reported. The deposition of compound in the form of an aggregate on the fiber surface was also observed under scanning electron microscopy. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 70: 1847–1858, 1998  相似文献   

9.
The main objective of this work is to study the effect of chemical treatment on the thermal properties of hybrid natural fiber-reinforced composites (NFRCs). Different chemical treatments [i.e., alkalized and mixed (alkalized+ silanized)] were used to improve the adhesion between the natural fibers (jute, ramie, sisal, and curauá) and the polymer matrix. A differential scanning calorimetry, thermogravimetry, and a dynamic mechanical analysis were performed to study the thermal properties of hybrid NFRC. It was found that the chemical treatments increased the thermal stability of the composites. Scanning electron microscopy images showed that the chemical treatments altered the morphology of the natural fibers. A rougher surface was observed in case of alkali treated fiber, whereas a thin coating layer was formed on the fiber surface during the mixed treatment. However, for some fibers (i.e., sisal and rami), the chemical treatment has a positive impact on the composite properties, whereas for the jute and curauá composites, the best behavior was found for untreated fibers. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47154.  相似文献   

10.
The aim of the present study is to investigate and compare the mechanical properties of raw jute and sisal fiber reinforced epoxy composites with sodium hydroxide treated jute and sisal fiber reinforced epoxy composites. This is followed by comparisons of the sodium hydroxide treated jute and sisal fiber reinforced composites. The jute and sisal fibers were treated with 20% sodium hydroxide for 2 h and then incorporated into the epoxy matrix by a molding technique to form the composites. Similar techniques have been adopted for the fabrication of raw jute and sisal fiber reinforced epoxy composites. The raw jute and sisal fiber reinforced epoxy composites and the sodium hydroxide treated jute and sisal fiber reinforced epoxy composites were characterized by FTIR. The mechanical properties (tensile and flexural strength), water absorption and morphological changes were investigated for the composite samples. It was found that the sodium hydroxide treated jute and sisal fiber reinforced epoxy composites exhibited better mechanical properties than the raw jute and raw sisal fiber reinforced composites. When comparing the sodium hydroxide treated jute and sisal fiber reinforced epoxy composites, the sodium hydroxide treated jute fiber reinforced composites exhibited better mechanical properties than the latter.  相似文献   

11.
Biocomposites were produced using polycaprolactone and starch as matrix, and sisal fibers as reinforcement. The matrix is a biodegradable commercial product called MaterBi‐Z, which is based on a polycaprolactone and starch system. The relationship between processing conditions and properties is reported. An alkaline treatment was performed in order to improve the adhesion and the compatibility of the fiber with the matrix. The effect of the treatment on the tensile properties and morphology was determined. Fiber content enhances the tensile properties of the biodegradable composite. The experimentally observed tensile properties (modulus and tensile strength) of short sisal fiber reinforced MaterBi‐Z matrix composites with different fiber loading are compared with the existing theories of reinforcement. SEM photomicrographs of the fractured composite surfaces are also analyzed.  相似文献   

12.
The effects of strain rate and water absorption properties can be used to evaluate the environmental degradation of sisal fiber reinforced polymer–matrix composites. Composites of vinylester and epoxy resin, reinforced by sisal fiber, were manufactured using the RTM method. To examine how the mechanical properties change with different surface treatments of a fiber, three fibrous composites with nontreated, permanganate, and silane treatments were compared in this experiment. Material fracture occurred as the brittleness hardened due to an increase in strain rate. The tensile strength was the largest in the permanganate‐treated epoxy composites, while the untreated vinylester had high elongation and fracture energy. The highest tensile strength value occurred at a 30% absorption ratio. POLYM. COMPOS., © 2011 Society of Plastics Engineers.  相似文献   

13.
利用转矩流变仪测量流变特性的方法,表征了不同剑麻纤维含量下,聚乳酸(PLA)/剑麻复合材料的流变性能,并测量实验后纤维的长度和宽度、PLA分子量,分析剑麻纤维含量和转速对复合材料体系中纤维长度的影响,以及PLA降解情况。结果表明,复合材料的非牛顿指数在纤维含量为10%左右出现峰值,并进一步随含量的增加而减小。复合体系中,刚性剑麻纤维受到来自于转子、聚合物和纤维之间的作用力,纤维被剪短,长径比减小;聚乳酸会受到转速和纤维含量的影响发生降解,这些因素都会影响PLA/剑麻复合材料的流变性能。  相似文献   

14.
Starch based thermoplastic composites reinforced by short sisal fibers having length less than 1 mm were fabricated by extrusion followed by compression molding. The sisal fiber content varied from 0 to 10% w/w keeping the amount of glycerol (plasticizer) as constant (23% w/w). Investigation proved that an increase in the amount of sisal fibers will decrease the ductile nature of composites. The Young's modulus and hardness value increases as a function of fiber content. The impact strength varied as a function of fiber content. Contact angle analysis showed that incorporation of sisal fibers to the matrix increases its hydrophilic nature. The polar factor and total surface energy increases as a function of fiber content whereas dispersive factor decreases. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

15.
The natural fibers (banana, hemp and sisal) and polystyrene (PS) were taken for the preparation of natural fiber polymer composites in the different ratios of 40:60, 45:55, 50:50 and 55:45 (wt/wt), respectively. These fibers were esterified with maleic anhydride (MA) and the effect of esterification of maleic anhydride was studied on surface resistivity and volume resistivity of natural fiber/polystyrene composites. It was found that the untreated fibers composites show more surface resistivity and volume resistivity in comparison to maleic anhydride treated fibers composites. An untreated hemp fibers composite shows maximum surface and volume resistivity while maleic anhydride treated sisal fibers composites show minimum surface and volume resistivity.  相似文献   

16.
In the present study, the mechanical and thermal properties of sisal fiber‐reinforced unsaturated polyester (UP)‐toughened epoxy composites were investigated. The sisal fibers were chemically treated with alkali (NaOH) and silane solutions in order to improve the interfacial interaction between fibers and matrix. The chemical composition of resins and fibers was identified by using Fourier‐transform infrared spectroscopy. The UP‐toughened epoxy blends were obtained by mixing UP (5, 10, and 15 wt%) into the epoxy resin. The fiber‐reinforced composites were prepared by incorporating sisal fibers (10, 20, and 30 wt%) within the optimized UP‐toughened epoxy blend. Scanning electron microscopy was used to analyze the morphological changes of the fibers and the adhesion between the fibers and the UP‐toughened epoxy system. The results showed that the tensile and flexural strength of (alkali‐silane)‐treated fiber (30 wt%) ‐reinforced composites increased by 83% and 55%, respectively, as compared with that of UP‐toughened epoxy blend. Moreover, thermogravimetric analysis revealed that the (alkali‐silane)‐treated fiber and its composite exhibited higher thermal stability than the untreated and alkali‐treated fiber systems. An increase in storage modulus and glass transition temperature was observed for the UP‐toughened epoxy matrix on reinforcement with treated fibers. The water uptake behavior of both alkali and alkali‐silane‐treated fiber‐reinforced composites is found to be less as compared with the untreated fiber‐reinforced composite. J. VINYL ADDIT. TECHNOL., 23:188–199, 2017. © 2015 Society of Plastics Engineers  相似文献   

17.
孙金鹏  张靠民  李如燕  赵焱  张兰 《化工进展》2020,39(5):2009-2016
针对废旧地膜资源化利用过程中出现的高成本和低性能问题,本文提出了废旧地膜免清洗和剑麻纤维边角料增强的废旧地膜资源化利用技术。采用挤出造粒和注塑成型工艺,制备了剑麻边角料填充含红土废旧聚乙烯复合材料,分析了红土和剑麻纤维边角料对废旧地膜的填充作用。结果表明,红土颗粒使废旧地膜注塑试样的拉伸模量、硬度和耐热温度分别提高了34.4%、41.3%、和33.1%。红土颗粒难以和塑料基体形成良好的界面粘结,导致含红土废旧地膜注塑试样的拉伸强度、弯曲性能和冲击强度轻微降低,表明红土颗粒不能对废旧地膜进行增韧增强,但可以提高模量和耐热温度。剑麻纤维边角料对含红土废旧地膜具有明显的增强增韧作用,随着剑麻纤维添加量的增加,剑麻纤维填充的含红土废旧地膜复合材料的力学性能增加。剑麻纤维填充量超过一定值后,会在复合材料中引入气孔,同时会降低剑麻纤维的分散程度,出现剑麻聚集体,导致复合材料的力学性能降低。  相似文献   

18.
《Polymer Composites》2017,38(10):2192-2200
The present investigation is focused to study the permeability of natural fiber during vacuum infusion (VI) process and the effect of the surface treatments of natural fiber, fiber loading direction, resin flow direction and process parameter on the tensile properties of developed composites (sisal/bio based epoxy). The bio based resin exhibits good flow characteristics in NaOH and isocyanate treated fibers which may be attributed to change in polarity. The surface treatments appear to provide an appreciable enhancement in tensile strength through enhanced bonding between fiber and matrix. The longitudinal tensile strength has been found to be higher than that of the transverse direction and the flow along the fiber provides maximum tensile strength. It has also been demonstrated that VI process provides improved mechanical properties as compared to hand‐layup process. Morphological studies of fractured developed composites were performed by scanning electron microscopy (SEM) to understand the de‐bonding of fiber/matrix adhesion. POLYM. COMPOS., 38:2192–2200, 2017. © 2015 Society of Plastics Engineers  相似文献   

19.
Composites based on isotactic polypropylene (PP) and sisal fiber (SF) were prepared by melt mixing and injection molding. The melt mixing characteristics, thermal properties, morphology, crystalline structure, and mechanical behavior of the PP/SF composites were systematically investigated. The results show that the PP/SF composites can be melt mixed and injection molded under similar conditions as the PP homo‐polymer. For the composites with low sisal fiber content, the fibers act as sites for the nucleation of PP spherulites, and accelerate the crystallization rate and enhance the degree of crystallinity of PP. On the other hand, when the sisal fiber content is high, the fibers hinder the molecular chain motion of PP, and retard the crystallization. The inclusion of sisal fiber induces the formation of β‐form PP crystals in the PP/SF composites and produces little change in the inter‐planar spacing corresponding to the various diffraction peaks of PP. The apparent crystal size as indicated by the several diffraction peaks such as L(110)α, L(040)α, L(130)α and L(300)β of the α and β‐form crystals tend to increase in the PP/SF composites considerably. These results lead to the increase in the melting temperature of PP. Moreover, the stiffness of the PP/SF composites is improved by the addition of sisal fibers, but their tensile strength decreases because of the poor interfacial bonding. The PP/SF composites are toughened by the sisal fibers due to the formation of β‐form PP crystals and the pull‐out of sisal fibers from the PP matrix, both factors retard crack growth.  相似文献   

20.
In this research, the mechanical, acoustical, thermal, morphological, and infrared spectral properties of untreated, heat and alkaline‐treated sisal fiber‐reinforced poly‐lactic‐acid bio‐composites were analyzed. The bio‐composite samples were fabricated using a hot press molding machine. The properties mentioned above were evaluated and compared with heat‐treated and alkaline‐treated sisal fibers. Composites with heat‐treated sisal fibers were found to exhibit the best mechanical properties. Thermo‐gravimetric analysis (TGA) was conducted to study the thermal degradation of the bio‐composite samples. It was discovered that the PLA‐sisal composites with optimal heat‐treated at 160°C and alkaline‐treated fibers possess good thermal stability as compared with untreated fiber. The results indicated that the composites prepared with 30wt % of sisal had the highest sound absorption as compared with other composites. Evidence of the successful reaction of sodium hydroxide and heat treatment of the sisal fibers was provided by the infrared spectrum and implied by decreased bands at certain wavenumbers. Observations based on scanning electron microscopy of the fracture surface of the composites showed the effect of alkaline and heat treatment on the fiber surface and improved fiber‐matrix adhesion. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42470.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号