首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methanethiol has been synthesized by one‐step catalytic reaction from H2S‐content syngas on K2MoS4/SiO2 catalyst with selectivity over 95% under the optimum reaction conditions of 563 K, 2.0–3.0 MPa and 5–6% H2S content in the feed syngas. The results of XRD and XPS showed that Mo–S–K phase on the surface of the catalyst K2MoS4/SiO2 was responsible for the high activity and selectivity to methanethiol, and which may be restrained by the existence of (S–S)2- species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
6-dimethylamino-6-methylfulvene (7) was converted to the [(C5H4)–CMe2–NMe2] ligand system (8) by treatment with methyllithium. Its reaction with MCl4 (M = Zr, Ti) followed by treatment with CH3Li gave the respective [(C5H4)–CMe2–NMe2]2M(CH3)2 complexes (12). Their reaction with B(C6F5)3 led to reactive metallocene cation complexes that instantaneously underwent CH activation at a N–CH3 group to yield the metallacyclic cation complexes 15. (tert-butylaminomethyl)fluorene was prepared by the addition of tert-butylisocyanate to fluorenyllithium followed by hydride reduction. Deprotonation by a variety of bases gave rise to a series of competing and consecutive reactions to yield several unusually structured products, among them a fluorenyl-anellated η5-1-azapentadienyl anion equivalent (25) and [(flu)-CH2–NCMe3]Li2 (23). An improved way of generating synthetically useful C1-linked [Cp–C1(R) n –NR1]2- dianion equivalents was developed starting from 6-amino-6-methylfulvene (26). N-silylation followed by double deprotonation with, e.g., lithium diisopropylamide cleanly furnished the respective [(C5H4)–C(=CH2)–NSiMe3]2- dianion 33 (isolated as the dilithio derivative). Its reaction with Cl2Zr(NEt2)2 in THF gave [η5:κ-N-(C5H4)–C(=CH2)–NSiMe3]Zr(NEt2)2 36. Activation of 36 with methylalumoxane in toluene led to the formation of a C1-linked “constrained geometry” Ziegler catalyst that polymerized ethylene similarly as the [(C5Me4)SiMe2NCMe3]ZrCl2 derived literature system. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Two organic–inorganic hybrid dicyclohexyl-18-crown-6 complexes, [K(DC18C6-B)]2[Pd(i-mnt)2] (1) and [K(DC18C6-A)]2[Pt(i-mnt)2] (2) (DC18C6-A=cis-syn-cis-dicyclohexyl-18-crown-6, A isomer; DC18C6-B = cis-anti-cis-dicyclohexyl-18-crown-6, B isomer; i-mnt=1,1-dicyanoethene-2,2-dithiolate, isomaleonitriledithiolate), were synthesized by the reaction of dicyclohexyl-18-crown-6 with K2(i-mnt) and PdCl2 or K2PtCl4 respectively. These were characterized by elemental analysis, FT–IR, UV–Vis spectroscopy and single crystal X-ray diffraction. In complex 1, two [K(DC18C6-B)]+ complex cations and one [Pd(i-mnt)2]2− complex anion formed a neutral molecule through two K–N coordination bonds. The resulting molecule adopted a 1D chain arrangement via K N weak interactions. Complex 2 showed a 1D chain-like structure that was assembled by two [K(DC18C6-A)]+ complex cations and one [Pt(i-mnt)2]2− complex anion through N–K–N interactions. An erratum to this article can be found at  相似文献   

4.
Marine fish have an absolute dietary requirement for C20 and C22 highly unsaturated fatty acids. Previous studies using cultured cell lines indicated that underlying this requirement in marine fish was either a deficiency in fatty acyl Δ5 desaturase or C18–20 elongase activity. Recent research in turbot cells found low C18–20 elongase but high Δ5 desaturase activity. In the present study, the fatty acid desaturase/elongase pathway was investigated in a cell line (SAF-1) from another carnivorous marine fish, sea bream. The metabolic conversions of a range of radiolabeled polyunsaturated fatty acids that comprised the direct substrates for Δ6 desaturase ([1-14C]18∶2n−6 and [1-14C]18∶3n−3), C18–20 elongase ([U-14C]18∶4n−3), Δ5 desaturase ([1-14C]20∶3n−6 and [1-14C]20∶5n−3), and C20–22 elongase ([1-14C]20∶4n−6 and [1-14C]20∶5n−3) were utilized. The results showed that fatty acyl Δ6 desaturase in SAF-1 cells was highly active and that C18–20 elongase and C20–22 elongase activities were substantial. A deficiency in the desaturation/elongation pathway was clearly identified at the level of the fatty acyl Δ5 desaturase, which was very low, particularly with 20∶4n−3 as substrate. In comparison, the apparent activities of Δ6 desaturase, C18–20 elongase, and C20–22 elongase were approximately 94-, 27-, and 16-fold greater than that for Δ5 desaturase toward their respective n−3 polyunsaturated fatty acid substrates. The evidence obtained in the SAF-1 cell line is consistent with the dietary requirement for C20 and C22 highly unsaturated fatty acids in the marine fish the sea bream, being primarily due to a deficiency in fatty acid Δ5 desaturase activity.  相似文献   

5.
The measurements of NO concentrations in the post-flame zone of different hydrocarbon + O2 + N2 flames at standard temperature and atmospheric pressure available in the literature are compared with predictions of the original Konnov reaction mechanism and with the same mechanism extended by the reaction of C2O with N2. The goal was to investigate the possible role of this reaction proposed by Williams and Fleming [Proc. Combust. Inst., Vol. 31 (2007), pp. 1109–1117]. This new reaction of C2O with N2 seems to be a reasonable explanation of the deficiencies in the prompt-NO route. Direct comparisons of the experimental measurements performed in different flames with the modeling strongly suggests that the upper limit of this reaction rate constant is k = 7 · 1011 exp(−17,000/RT) [cm3/(mole · sec)]. __________ Translated from Fizika Goreniya i Vzryva, Vol. 44, No. 5, pp. 3–7, September–October, 2008.  相似文献   

6.
The synthesis of dimethyl carbonate (DMC) through the transesterification of propylene carbonate (PC) with methanol was investigated by using imidazolium salt ionic liquid catalysts. 1-alkyl-3-methyl imidazolium salts of different alkyl group (C2, C4, C6, C8) and anions (Cl, Br, BF4, PF6) were used for catalysts. The reaction was carried out in an autoclave at 140–180°C under carbon dioxide pressure of 1.48–5.61 MPa. The imidazolium salts of shorter alkyl group, and more nucleophilic counter anion exhibited higher catalytic activity. The conversion of PC increased as CO2 pressure and reaction temperature increased. Kinetic studies were also performed to better understand the reaction mechanism. This paper was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

7.

Abstract  

The highly porous metal organic framework MOF-5 was loaded with the metal–organic compound [Pd(C3H5)(C5H5)] by metal–organic chemical vapor deposition (MOCVD) method. The inclusion compound [Pd(C3H5)(C5H5)]@MOF-5 was characterized by powder X-ray diffraction (PXRD), Fourier-transform infrared (FT-IR) spectroscopy, and solid-state nuclear magnetic resonance spectroscopy. It was found that the host lattice of MOF-5 remained intact upon precursor insertion. The –C3H5 ligand in the precursor is easier to lose due to the interaction between palladium and the benzenedicarboxylate linker in MOF-5, providing a possible explanation for the irreversibility of the precursor adsorption. Pd nanoparticles of about 2–5 nm in size was formed inside the cavities of MOF-5 by hydrogenolysis of the inclusion compound [Pd(C3H5)(C5H5)]@MOF-5 at room temperature. N2 sorption of the obtained material confirmed that high surface area was retained. In the Suzuki coupling reaction the Pd@MOF-5 materials showed a good activity in the first catalytic run. However, the crystal structure of MOF-5 was completely destroyed during the following reaction runs, as confirmed by PXRD, which caused a big loss of the activity.  相似文献   

8.
The effects of support pretreatment with nC1–C5 alcohols on the performance of Rh–Mn–Li/SiO2 catalyst in the synthesis of C2-oxygenates from syngas have been investigated by CO hydrogenation reaction, transmission electron microscopy (TEM), pulse adsorption of CO and H2, and Fourier Transform infrared (FT-IR) spectroscopy. The catalysts prepared from the pretreated silica supports exhibited higher space time yields of C2-oxygenates (STYC2-oxy) and selectivities towards C2-oxygenates (SC2-oxy) than that prepared from the untreated silica support. The enhancement in the hydrophobicity of the pretreated silica supports would be favorable for increasing Rh dispersion and ratio of Rh+/Rh0 sites, therefore increasing the number of active sites, especially the active sites for CO insertion. Such variations are responsible for the improvements in the catalytic performance of the Rh–Mn–Li/SiO2 catalyst.  相似文献   

9.
This study aimed to monitor the effect of temperature and the addition of nanosilica on the nanostructure of the C–S–H gel forming during tricalcium silicate (C3S) hydration. Two types of paste were prepared from a synthesized T1 C3S. The first consisted of a blend of deionized water and C3S at a water/solid ratio of 0.425. In the second, a 90 wt% C3S + 10 wt% of nanosilica blend was mixed with water at a water/solid ratio of 0.7. The pastes were stored in closed containers at 100% RH and 25°C, 40°C, or 65°C. The hydration reaction was detained after 1, 14, 28, or 62 d with acetone, and then pastes were studied by 29Si magic angle spinning nuclear magnetic resonance (29Si MAS NMR).The main conclusion was that adding nSA expedites C3S hydration at any age or temperature and modifies the structure of the C–S–H gel formed, two types of C–S–H gel appear. At 25°C and 40°C, more orderly, longer chain gels are initially (1 d) obtained as a result of the pozzolanic reaction between nSA and portlandite (CH) (C–S–HII gel formation). Subsequently, ongoing C3S hydration and the concomitant flow of dimers shorten the mean chain length in the gel.  相似文献   

10.
This study has utilized radiolabeled analogues of arachidonic acid to study the substrate specificity of elongation of long-chain polyunsaturated fatty acids. Human umbilical vein endothelial cells were incubated for 2–72 hr in medium supplemented with 0.9–2.6 μM [14C]fatty acid, and cellular glycerolipids were analyzed by gas-liquid chromatography with radioactivity detection. Elongation of naturally occurring C20 polyunsaturated fatty acids occurred with eicosapentaenoate (20∶5(n−3))>Mead acid (20∶3(n−9))>arachidonate (20∶4(n−6)). Chain length markedly influenced the extent of elongation of 5,8,11,14-tetraenoates (18∶4>19∶4>20∶4>21∶4); effects of initial double bond position were also observed (6,9,12,15–20∶4>4,7,10,13–20∶4. Neither 5,8,14- nor 5,11,14–20∶3 was elongated to the extent of 5,8,11–20∶3. Differences between polyunsaturated fatty acids were observed both in the initial rates and in the maximal percentages of elongation, suggesting that the content of cellular C20 and C22 fatty acids may represent a balance between chain elongation and retroconversion. Umbilical vein endothelial cells do not exhibit significant desaturation of either 22∶4(n−6) or 22∶5(n−3). By contrast, incubation with 5,8,11,14-[14C]18∶4(n−4) resulted in formation of both [14C]20∶5(n−4) and [14C]22∶5(n−4). The respective time courses for the appearances of [14C]22∶5(n−4) and [14C]20∶5(n−5) suggests Δ6 desaturation of [14C]22∶4(n−4) rather than Δ4 desaturation of [14C]20∶4(n−4).  相似文献   

11.
Anhydrous butterfat was irradiated at 6 megarads in a special glass reaction flask, and the headspace and total condensate samples were examined by wide-range (−180C to 125C) gas chromatography combined with mass spectrometry. The nature and amounts of volatile compounds were not greatly influenced by whether the butterfat was irradiated under oxygen or under vacuum, nor (apart fromn-alkanoic acids) by storage for 1 and 9 weeks. Carbon dioxide was produced in greatest amount. Of the remaining compounds, aliphatic hydrocarbons predominated both in number and amount. Aliphatic oxygenated compounds including carbonyl compounds were isolated in relatively small amounts. The following compounds were identified positively: C1–13 n-alkanes; C4–9 2-methylalkanes; C2–14 alk-l-enes; C2–9 alk-l-ynes; C2–5 n-alkanoic acids; C1–5 n-alkan-l-ols and propan-2-ol; C2–8 n-alkanals and 2-methylbut-2-enal; C3–5,7 alkan-2-ones; C1–4 n-alkyl formates, vinyl and isoamyl formate, methyl acetate and methyln-hexanoate; and carbon dioxide. Visiting Scientist from Division of Dairy Research, C.S.I.R.O., Highett, Victoria, Australia.  相似文献   

12.
The biosynthesis of (Z,Z)-6,9-heptacosadiene, the major cuticular hydrocarbon component of the American cockroach, was examined by radiotracer and13C-nuclear magnetic resonance (NMR) techniques. Sodium [1-14C] acetate was incorporated about equally into the saturated and diunsaturated hydrocarbons, whereas [1-14C] linoleate preferentially labeled the C27 alkadiene and [9,10-3H] oleate labeled the C27 alkadiene almost exclusively.13C-NMR demonstrated that [2-13C] acetate labeled carbons 25 and 27 but not carbon 3 of the C27 alkadiene. In addition, ozonolysis of the diene labeled from [1-14C] acetate followed by radio-gas liquid chromatography showed that carbons 1–6 were not labeled, whereas the fragment containing carbons 10–27 was labeled. The data presented in this paper indicate that linoleate from the diet or synthesized de novo is elongated by the addition of acetate units and is then decarboxylated.  相似文献   

13.
The isotopic exchange has been studied between catalyst radiosulfur and H2S, formed in thiophene hydrodesulfurization (HDS) (named S-displace) on alumina supported molybdena, on CoMoOx, PdMoOx, PtMoOx and on silica–alumina supported NiWOx. S-displace was compared with radiosulfur exchange data between catalyst radiosulfur and gas phase H2S (Sexc) determined previously. The extent of Sexc was higher than that of the S-displace for Mo, CoMo in and NiW, whereas the extent of S-displace from PdMoO and PtMoO was significantly higher, than that of Sexc. Thiophene HDS product distribution data are discussed in terms of increased C=C hydrogenation and C–C hydrogenolysis activity, explained by increasing H2S production with longer circulation time of the thiophene/H2 mixture, The C1/C3<1 ratios among C4-hydrogenolysis products indicate some coke formation. The decrease of thiophene HDS activity is presumably a consequence of increasing site-blocking with the formation of more H2S and coke with longer duration of thiophene treatment.  相似文献   

14.
Co–BaCO3 catalysts exhibited high catalytic performance for oxidative dehydrogenation of ethane (ODE) using CO2 as oxidant. The maximal formation rate of C2H4 was 0.264 mmol · min−1 · (g · cat.)−1 (48.0% C2H6 conversion, 92.2% C2H4 selectivity, 44.3% C2H4 yield) on 7 wt% Co–BaCO3 catalyst at 650 °C and 6000 ml. (g · cat.)−1. h−1. Co–BaCO3 catalysts were comparatively characterized by XRF, N2 isotherm adsorption-desorption, XRD, H2-TPR and LRs. It was found that Co4+–O species were active sites on these catalysts in ODE with CO2. The redox cycle of Co–O species played an important role on the catalytic performance of Co–BaCO3 catalysts. On the other hand, the co-operation of BaCO3 and BaCoO3 was considered to be one of possible reasons for the high catalytic activity of these catalysts.  相似文献   

15.
Three conjugated ethynylene-carbazole polymers with Tetrathiafulvalene (TTF) as pendant group (P1–P3) were synthesized by using sonogashira coupling reaction and characterized by 1H NMR, GPC, CV, UV–Vis, FL, and TGA. CV and UV–Vis spectra showed that an intramoleular interaction existed between the electron-rich moiety TTF and electron-deficient moiety polyethynylcarbazole of the polymers. A strong fluorescence quench (ca. 99%) could be observed, compared to the polyethynylene-carbazole without TTF units, which could be ascribed to the photo-induced electron transfer (PET) interaction from TTF moiety to the polyethynylene-carbazole backbone. The observed onset decomposition temperatures (T d) for P1–P3 varied from 256 to 298 °C. The polymers mentioned above exhibited good thermal properties and higher conductivity (neutral conductivity ~7–11 × 10−7 S cm−1; doped conductivity ~6–11 × 10−4 S cm−1).  相似文献   

16.
A nozzle, fabricated from nickel, molybdenum, iron, palladium, and quartz was utilized to produce longer chain hydrocarbons, C m H n (m ≥ 3, nm) from C2 (ethane, acetylene) and C1 (methane) reactants at nozzle temperature range 1000–1150°C. The conversion of ethane was close to 100% at T noz = 1000°C, while that of methane reached 20% at T noz = 1150°C. The contact time in the nozzle is in the 10-3–10-2 s range. The reactions are first and higher order in reactant pressure. The reaction mechanism involves the formation of free radicals at the nozzle surface followed by gas‐phase reactions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
A series of organotin(IV) carboxylates complexes; namely, [(Me2Sn)4O2(RCOO)4] (R = C12H15 1, C9H11 2, C8H8ClO 3, C7H9 4) and [Me3(RCOO)]n (R = C12H15 5, C9H11 6, C8H8ClO 7, C7H9 8) have been synthesized. All complexes were characterized by elemental analysis, FT-IR, and NMR (1H, 13C and 119Sn) spectroscopy. Among them, the structures of complexes 13 and 58 were also determined by X-ray crystallography. The structural analysis showed that complexes 13 are the same tetranuclear monomer, and complexes 58 are the same 1D zigzag chain coordination polymer. Furthermore, each complex 1, 2 and 3, can form a supramolecular chain through weak intermolecular interactions.  相似文献   

18.
A novel approach based on conjugation interruption was developed for a luminescent and thermally stable platinum(II) polyyne polymer trans-[–Pt(PBu3)2C≡C(C6H4)CH2(C6H4)C≡C–] n (1) containing the diphenylmethane chromophoric spacer. Particular attention was focused on the photophysical properties of this group 10 polymetallayne and comparison was made to its binuclear model complex trans-[Pt(Ph)(PEt3)2C≡C(C6H4)CH2(C6H4)C≡CPt(Ph)(PEt3)2] (2) and their closest group 11 gold(I) and group 12 mercury(II) neighbors, [MC≡C(C6H4)CH2(C6H4)C≡CM] (M = Au(PPh3) (3), HgMe (4)). The regiochemical structures of these angular-shaped compounds were studied by various spectroscopic analyses. Upon photoexcitation, each of them emits an intense purple-blue fluorescence emission in the near UV region in dilute fluid solutions at room temperature. Harvesting of organic triplet emissions harnessed through the strong heavy-atom effects of group 10–12 transition metals was examined. These metal-containing phenyleneethynylenes spaced by the conjugation-breaking CH2 unit were found to have high optical gaps and high-energy triplet states. The influence of metal and sp3-hybridized methylene conjugation-interrupters on the intersystem crossing rate and the spatial extent of the lowest singlet and triplet excitons was fully elucidated. Our investigations indicate that high-energy triplet states in these materials intrinsically give rise to very efficient phosphorescence with fast radiative decays. Dedicated to Professor Didier Astruc in recognition of his outstanding contribution to metallodendrimers and polymers.  相似文献   

19.
The cycloaddition of carbon dioxide to epichlorohydrin was performed without any solvent in the presence of ionic liquid as catalyst. 1-Alkyl-3-methyl imidazolium salts of different alkyl group (C2, C4, C6, C8) and anions (Cl, BF4, Br, PF6) were used for this reaction carried out in a batch autoclave reactor. The conversion of epichlorohydrin was affected by the structure of the imidazolium salt ionic liquid; the one with the cation of longer alkyl chain length and with more nucleophilic anion showed better reactivity. The conversion of epichlorohydrin increased as the temperature increased from 60°C to 140°C. It also increased with increasing carbon dioxide pressure probably due to the increase of the absorption of carbon dioxide into the mixture of epichlorohydrin and the ionic liquid. Zinc bromide was also tested for its use as a cocatalyst in this reaction. This work was presented at the 6 th Korea-China Workshop on Clean Energy Technology held at Busan, Korea, July 4–7, 2006.  相似文献   

20.
The hydrodechlorination of chlorobenzene to benzene and biphenyl was studied using poly(4-vinylpyridine)-immobilized Cu catalysts under CO in basic (NaOH, N(C2H5)3 or Na(CH3CO2)) aqueous 2-ethoxyethanol medium. This Cu system also catalyzed the water gas shift reaction. The catalytic activities for hydrodechlorination of chlorobenzene to benzene were studied as functions of the reaction parameters (nature of the base, reaction time, [Cu], P(CO), T, and S/C). Among the different base studied activity is maximum for NaOH. The rate of benzene formation displays a first-order dependence on [Cu] over the range 1.25–12.50 wt%. This observation was interpreted in terms of the presence of active species having the same nuclearity. The catalytic activity towards benzene formation proved to be first order dependence on P(CO) over the range 5–35 atm. The kinetics behavior with respect to P(CO) leads to the proposal that CO addition to the catalytic species precedes the rate-limiting step. The catalytic activity proved to be non-linear in chlorobenzene/Cu content, over the range 50–400 molar ratio. The results suggest that the rate-limiting step is preceded by reversible oxidative addition of chlorobenzene to Cu immobilized species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号