首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
冲击结晶技术制备亚微米TATB粒子的研究   总被引:15,自引:5,他引:10  
采用溶剂/非溶剂重结晶技术制备亚微米超细TATB粒子,考察了细化过程中显著影响超细TATB粒子粒径的因素,优化了工艺条件.制备了平均粒径0.171μm、比表面积达到31m2/g的亚微米TATB粒子.  相似文献   

2.
为了改善改性单基发射药的安定性和力学性能,制备了含3种不同粒径(50、80和110μm)球形硝基胍(NQ)的改性单基发射药,通过差示扫描量热法、真空安定性试验和甲基紫试验研究了其热分解过程和热安定性,并测试了其抗冲击和抗压缩强度,分析了NQ粒径变化对改性单基发射药热行为和力学性能的影响。结果表明,3种含球形NQ的改性单基发射药试样有两个热分解过程,第一个分解过程对应的是混合硝化棉的分解,第二个分解过程是RDX和NQ的分解,但是第二个分解过程不明显;随着NQ粒径从50μm增至110μm,发射药试样的热分解峰温从176.84℃提高至179.71℃;真空安定性试验中试样48h放气量从0.7558mL/g降至0.5964mL/g,甲基紫试纸变为橙色的时间从44min延长至54min,且加热5h后未发生爆炸;发射药试样的抗冲击强度从4.23kJ/m~2降至3.81kJ/m~2,抗压缩强度从56.93MPa降至53.85MPa。表明球形NQ粒径的增加有利于提高发射药的热安定性,但会降低其力学性能。  相似文献   

3.
为了获得粒径分布均匀的细化RDX,在超重力反应器中,以丙酮-水作为溶剂-反溶剂重结晶体系,添加聚乙烯吡咯烷酮(PVP)作为表面活性剂,制备了亚微米级RDX。研究了RDX溶液浓度、PVP含量以及超重力反应器转速对RDX形貌和尺寸的影响,获得最优工艺条件,利用SEM、XRD和FT-IR对其形貌、晶体结构和分子结构进行了表征,并采用DSC研究了RDX的热分解过程。结果表明,在RDX溶液浓度为0.04g/mL、PVP浓度为0.2g/L、超重力反应器转速为1500r/min时,制备了平均粒径为0.54μm的亚微米级RDX,细化处理未改变RDX的晶型;与原料RDX相比,亚微米级RDX的分解峰温提前了1.2℃,热分解活化能从180~250kJ/mol降至约150kJ/mol。  相似文献   

4.
为探究主体炸药HMX的粒度对PBX(HMX)/AP复合含能材料的热分解和激光点火性能的影响,通过溶剂-非溶剂法对原料HMX和AP进行重结晶并筛分得到不同粒径分布的HMXR和细粒度APR(5~20μm),进而制备含不同HMX粒度的PBX(HMX)/AP,对所得晶体和复合物分别进行SEM、DSC、DSC-IR及热分解动力学和1064nm激光点火测试。结果表明,HMXR和APR的热分解表观活化能Ea和热爆炸临界温度Tb随着晶体粒度减小而减小;PBX(HMX)/AP中,HMXRC的粒径范围为30~140μm、d50为68μm、按HMX与AP零氧平衡配比的PBX(HMXRC)/AP热性能最优,其热分解表观活化能Ea为212.78kJ/mol,比HMXRC降低约274.44kJ/mol;其热爆炸临界温度为197.45℃,比HMXRC降低约...  相似文献   

5.
刘康  黄瑶  李斌栋 《现代化工》2020,(10):202-206
建立了以Caterpillar微型混合器为核心的微反应系统,并在该系统中利用物理结晶法制备纳米1,3,5-三氨基-2,4,6-三硝基苯(TATB),在浓DMSO/碱-酸体系下进行重结晶。结果表明,在DMSO/碱-酸体系下,溶剂与非溶剂流量分别为2 m L/min和3 m L/min、停留时间为16. 96 s、硝酸的质量分数为2%时,获得的最小粒径D50为406 nm,其离散度为0. 68,小于文献中报道的5μm的平均粒径。  相似文献   

6.
喷雾干燥法制备球形RDX的工艺优化   总被引:1,自引:0,他引:1  
以丙酮为溶剂,采用喷雾干燥法制备了微米级球形RDX,研究了入口温度、进料速率、喷雾气体流速和溶液浓度对所得RDX颗粒形貌的影响。通过扫描电镜(SEM)分析了不同工艺条件下制备的RDX的球形化效果,用DSC分析了其热分解特性,并测试了其撞击感度。结果表明,制备球形RDX的最佳工艺条件为:入口温度为60℃,进料速率为1.5mL/min,喷雾气体流速为357L/h,原料RDX质量分数为1.9%,抽气流速为40m3/h。在此工艺条件下,获得了中值粒径为2.82μm、表面较光滑的球形RDX颗粒。与原料RDX相比,球形RDX的热分解表观活化能降低了2.33kJ/mol,特性落高从19.98cm升至54.70cm,表明球形RDX的撞击感度明显降低。  相似文献   

7.
采用溶剂/非溶剂法,在超声辅助的情况下,制备了TATB/HMX共晶炸药;探究了TATB/HMX共晶技术的影响因素;计算了TATB/HMX共晶炸药的理论密度和理论爆速;采用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和差示扫描热量法(DSC)对其进行表征和热分析,并测试了其撞击感度。结果表明,制备TATB/HMX共晶的最佳工艺条件为:以[Emim]Ac/DMSO为复合溶剂,TATB和HMX投料比(摩尔比)为3∶7,温度为80℃,搅拌速率为500r/min;与原料相比,TATB/HMX共晶分子在结构上发生改变;TATB/HMX共晶炸药颗粒大小约为2μm,形貌为六边形晶体;共晶炸药的热安定性优于原料HMX,其特性落高比原料HMX高74cm,撞击感度明显降低;理论密度为1.891g/cm~3,理论爆速为8.758km/s,表明其爆炸性能良好。  相似文献   

8.
为了提高纳米复合金属氧化物对高氯酸铵(AP)热分解的催化作用,以Bi(NO3)3·5H2O、Fe(NO3)3·9H2O和GO为前驱体,采用水热法制备了铁酸铋/石墨烯(BiFeO3/rGO)纳米复合材料;利用XRD、FT-IR、XPS、TGA、SEM和TEM等对所制备样品的结构、粒径及形貌进行了表征;采用差热分析研究了不同添加量的BiFeO3/rGO纳米复合材料对AP热分解过程的影响,分析了BiFeO3/rGO对AP热分解的催化机理及其对AP热分解动力学的影响。结果表明,rGO的引入有效阻止了纳米BiFeO3颗粒的团聚,大大增加了比表面积;当BiFeO3/rGO纳米复合材料的质量分数为4%时,AP的高温分解峰降低最多,达167℃,表观分解热增加了1631J/g,达2518J/g,表观活化能从172.07kJ/mol降低至128.35kJ/mol,表明所制备的BiFeO3/rGO纳米复合材料能有效催化AP的热分解。  相似文献   

9.
超临界快速膨胀法制备植物甾醇超细微粒   总被引:6,自引:1,他引:6  
通过药物颗粒的微细化,降低其粒度,增大比表面积,进而提高药物颗粒的溶解度,可以有效地改善难溶药物的生物利用度。该文采用超临界流体快速膨胀法(RESS)微细化植物甾醇颗粒。利用SEM分析了沉淀颗粒的形貌及粒径大小。分析了过程参数与所制备颗粒粒度的关系。研究发现,当喷嘴内径Dn从60μm减小到40μm,植物甾醇颗粒粒径由10~20μm减小为5μm;预膨胀压力p0从15MPa增加到25MPa时,颗粒粒径由10~15μm降至5μm;预膨胀温度T0由318K升高到333K时,颗粒粒径由5~10μm减小为1μm,粒径分布也趋于均匀。喷嘴温度Tn对粒径无显著影响。该法制备得到1~20μm无定形植物甾醇微细颗粒,且具有更高的溶解速率,比原料植物甾醇早3h达到饱和溶解度。  相似文献   

10.
通过高温高压溶剂沉淀法成功制备了选择性激光烧结(SLS)用聚酰胺1012/纳米羟基磷灰石(PA1012/n-HAP)复合粉体。采用差示扫描量热法(DSC)详细分析了复合粉体的热性能,通过扫描电镜(SEM)分析、激光粒度分析、休止角及堆积密度测试对复合粉体的形貌和流动性进行了探究。结果发现:与同比例PA1012/n-HAP复合材料相比,溶剂沉淀法所制备PA1012/n-HAP复合粉体的熔融温度降低了4~6℃,且结晶度明显提高;PA1012/n-HAP复合粉体的烧结温度窗口宽于纯PA1012粉体,且当HAP含量为1%时达到最大值17.1℃。由于复合粉体粒径可随HAP含量的变化而改变,因此能实现对粉体粒径的调控。在加入10%的HAP时,粉体粒径由纯PA1012粉体的126.14μm降至54.87μm,且粉体趋于规整的球体;随着HAP含量的增加,复合粉体的堆积密度逐渐增大,休止角则呈下降趋势,且粉体流动性增强。  相似文献   

11.
在溶剂(水)-反溶剂(乙醇)体系下,利用反溶剂超声分散法制备磷酸二氢铵超细粉体,探索得到一种简便、经济的超细粉体制备方法,为后续灭火材料的制备提供基础。研究了超声时间、溶液初始浓度、溶剂-反溶剂体积比、超声功率等条件对磷酸二氢铵粉体形貌和粒径的影响。利用纳米激光粒度仪、扫描电镜、红外光谱、X-射线衍射等对原料和产物进行表征分析。实验结果表明:超声时间为4 min,磷酸二氢铵溶液浓度为0.1 mol/L,溶剂反溶剂体积比为2∶8,超声功率为仪器总功率的9%时,可得粒径500 nm左右的磷酸二氢铵纳米流体;高速离心及真空干燥后,得到粒径2~3μm的固体颗粒产物。  相似文献   

12.
用DSC-TG研究了TATB的热分解过程。根据升温速率分别为5、10、15、20K/min的DSC和TG-DTG曲线计算了分解反应的活化能(E)、指前因子(A)和120℃时的速率常数(k120),并计算了升温速率为5K/min时,TATB分解峰值温度时的分解反应活化焓、活化熵和活化自由能,用小容量测试法研究了TATB在1-乙基-3-甲基咪唑醋酸盐/二甲基亚砜([Emim]Ac/DMSO)溶剂中的热爆炸特性。结果表明,采用Kissinger法和Ozawa法计算得到TATB分解反应的活化能分别为212.1和212.0kJ/mol,采用Rogers公式和Arrhenius公式计算得到A和k120值分别为5.87×1016s-1和3.87×10-12s-1;升温速率为5K/min条件下,TATB分解峰值温度时的分解反应活化焓、活化熵和活化自由能分别为206kJ/mol、61.42J/(K·mol)和167.39kJ/mol,TATB粉末的临界爆炸温度为336.6℃;TATB在[Emim]Ac/DMSO溶剂中不爆炸。  相似文献   

13.
以含能聚合物(EP)和硝基胍(NQ)为原料,采用溶剂/非溶剂法制备了EP/NQ复合含能材料,采用扫描电镜(SEM)、比表面积测试法(BET)和X射线衍射(XRD)对其形貌和结构进行了表征,用热重-差示扫描量热法(TGDSC)对比分析了EP/NQ复合含能材料及其物理共混物的热性能。结果表明,EP/NQ复合含能材料具有三维纳米网络结构,NQ沉积在EP上面,其平均粒径为49~62nm,NQ的长针状结晶消除;与EP相比,EP/NQ复合含能材料的比表面积降低,且随着NQ质量分数由40%增至60%,EP/NQ复合含能材料的比表面积由54.599m2/g降至25.02m2/g;EP/NQ复合含能材料具有单一的热分解峰特性,热分解峰温比NQ提前55~59℃,且随着NQ质量分数由40%增至60%,EP/NQ复合含能材料的热分解峰温由200.1℃升至203.7℃;EP/NQ复合含能材料的分解热显著高于EP/NQ物理共混物。  相似文献   

14.
以聚叠氮缩水甘油醚(GAP)为含能骨架,六亚甲基二异氰酸酯(HDI)为交联剂,采用溶胶-凝胶法结合真空冷冻干燥技术,制备了CL-20质量分数分别为25%、45%、60%的GAP-HDI/CL-20纳米复合含能材料。利用SEM、Raman、FT-IR对其结构和形貌进行了表征;利用DTA对其热分解特性进行了研究;根据不同升温速率下的DTA曲线测试结果对所制备样品的热分解动力学参数、热力学参数和热爆炸临界温度进行了计算。结果表明,CL-20粒子成功负载到了GAP-HDI凝胶骨架中,形貌由棱柱状转变为类球形,且粒径为纳米级;GAP-HDI/CL-20纳米复合含能材料的初始热分解峰温较原料CL-20均有所提前;CL-20质量分数分别为25%、45%、60%的GAP-HDI/CL-20纳米复合含能材料在高温热分解阶段表观活化能分别为224.9、228.9、231.7kJ/mol,与原料CL-20相比,分别降低了28.4、24.4和21.6kJ/mol,说明纳米复合粒子的热分解活性得以提高;GAP-HDI/L-20纳米复合含能材料的热力学参数和热爆炸临界温度均随着CL-20含量的增加而增大。  相似文献   

15.
为了减小AN的粒径,采用超低温喷射冻干法制备了纳米AN;采用扫描电镜(SEM)、光学显微镜(OM)、X射线衍射(XRD)、红外光谱(IR)和X光电子能谱(XPS)对样品进行了表征;采用差示扫描量热法(DSC)和热重-质谱(TG-MS)分析了其热分解性能;测试了纳米AN的机械感度和热感度,并与原料AN进行了对比。结果表明,制备出的纳米AN微观形貌呈类球形,粒径小于100nm;其分子结构、表面元素和晶相与原料AN一致;纳米AN的热分解活化能为92.11kJ/mol,较原料AN仅下降了5.43kJ/mol,说明纳米化后其热稳定性基本不变;纳米AN热分解的产物为NH3、H2O和N2O,与原料AN基本一致;纳米AN对机械作用非常钝感,10kg落球下特性落高(H50)大于110cm,摩擦感度爆炸百分比(P)为16%;但纳米AN热感度低于原料AN,其5s爆发点(T5s)为277℃,而原料AN的T5s为266℃。  相似文献   

16.
李席  李建  朱小龙  金效齐  沈雪梅  王伯良 《塑料》2023,(1):64-67+115
用静电喷雾技术制备了聚乳酸/萘普生(PLA/NPX)复合微球,用扫描电子显微镜(SEM)观察微观形貌,研究了NPX添加量、溶剂种类、电压和针头内径对微球形貌影响。结果表明,当NPX添加量小于20%、电压为18 kV、针头直径为0.6 mm、接收距离为15 cm、溶剂为二氯甲烷时,微球的分散较为均匀,随着NPX含量的增加,导致颗粒粘附、团聚;二氯甲烷中添加乙醇导致微球表面凹陷,微球平均粒径由5.18μm降低至2.41μm;增加电压使得复合微球平均粒径减小,且电压过大增加微球形貌不规则程度;针头内径降低至0.25 mm,复合微球平均粒径由5.18μm降低至3.8μm,平均粒径显著降低。  相似文献   

17.
纳米铜锰复合氧化物固相反应法的制备与表征   总被引:1,自引:0,他引:1  
李海霞 《无机盐工业》2007,39(11):30-33
以乙酸铜、乙酸锰与草酸为原料,采用固相化学反应法制备了纳米铜锰复合氧化物前驱物,利用均匀设计考察了微波功率与加热时间、热分解温度及时间对产物粒径的影响。研究表明热分解温度对产品粒径的影响最大。最小粒径产物的制备条件是:微波功率540 W,微波加热时间15 min;热分解温度370℃,热分解时间2 h。XRD和TEM分析结果表明,此产品主要物相为Cu1.5Mn1.5O4,结构属立方晶系,空间群为Fd3m,平均粒径16.9-19.0 nm。应用TG-DTG和DSC技术研究了纳米铜锰复合氧化物的热分解过程以及热分解动力学,采用Ozawa积分法和Coats-Redfern积分法得前驱体的热分解机理函数均为G(α)=[-ln(1-α)]^2/3。  相似文献   

18.
超细碳酸钙热分解动力学研究   总被引:1,自引:0,他引:1  
采用一种新型固相反应方法——超音速气流低热固相法成功制备了超细碳酸钙。应用XRD和SEM对其进行了表征和粒径分析,结果显示制备的碳酸钙颗粒平均尺寸为0.5μm。利用差热分析技术(DTA)测试了该方法制备的超细碳酸钙的热分解动力学参数,得到了碳酸钙的表观热分解活化能为79.1845 kJ/mol,指前因子A为9.181 2×104s-1。  相似文献   

19.
在不同温度下热分解金属–有机框架-5(MOF-5),制备不同平均粒径、不同结晶度的六方纤锌结构纳米ZnO,通过刮刀法将制备所得ZnO浆料制备成ZnO光阳极薄膜,并组装成染料敏化太阳能电池(DSSC)。采用X射线衍射仪和扫描电子显微镜对合成的MOF-5、ZnO纳米粒和ZnO光阳极薄膜的物相和形貌进行表征,研究了ZnO纳米粒形貌和光阳极厚度对电池性能的影响。结果表明:MOF-5的煅烧温度越高,获得的ZnO纳米粒粒径越大,结晶度越高。ZnO纳米粒粒径越小,比表面积越大,制备的光阳极膜染料吸附量越大,DSSC的光电转换效率越高。然而,如果ZnO纳米粒粒径过小,结晶度太低,则会降低电池的光电转换效率。当ZnO纳米粒平均粒径为65.5 nm,制备所得的电池效率最高;通过优化光阳极膜厚度,可进一步提高电池效率,当厚度为48μm时电池效率最高,为3.86%。  相似文献   

20.
针对钢铁厂含铁尘泥低附加值的问题,以氯化胆碱-二水合草酸(CC-OA)低共熔溶剂(DES)为研究体系,以钢厂含铁粉尘(经水洗处理)为研究对象,提出了运用氯化胆碱-二水合草酸低共熔溶剂处理含铁粉尘固相前驱体热分解法制备纳米氧化铁,并对处理过程中前驱体热分解及纳米氧化铁晶粒生长进行动力学分析。研究表明:处理过程中得到的前驱体为FeC2O4·2H2O,以其热分解第二阶段为热分析动力学的研究目标,根据Ozawa方程法、Kissinger-Akahira-Sunose方程法和Starink方程法3种等转化率法得到的平均反应活化能为220.54 kJ/mol。前驱体焙烧的最佳条件:焙烧温度为673 K、焙烧时间为1 h。根据唯象方程计算出纳米氧化铁的晶粒生长平均激活能为39.06 kJ/mol,并得到了焙烧温度、焙烧时间与粒径的关系,实现特定粒径纳米氧化铁的制备。最佳焙烧条件下得到的纳米氧化铁纯度达99.67%,扫描电镜下观察其颗粒呈现不规则的立方晶体结构,粒径主要分布在10~100 nm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号