首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以正硅酸乙酯(TEOS)、无水乙醇(Eth)、Fe(NO3)3·9H2O和盐酸(HCI)为原料,采用溶胶一凝胶方法制备了纳米α-Fe2O3/SiO2复合材料.同时研究了热处理温度以及Fe2O3浓度对纳米复合材料α-Fe2O3/SiO2的形成及磁性能的影响.结果表明:纳米α-Fe2O3/SiO2复合材料最佳热处理温度为700℃左右,Fe2O3最佳浓度为40%.(质量分数)左右,相应的纳米α-Fe2O3/SiO2复合材料的磁性能也是最佳的.  相似文献   

2.
采用溶胶2凝胶法制备了纳米 Co Fe 2O 4/ SiO 2复合材料。利用 X射线衍射(XRD) 、 透射电镜( TEM) 、 振动样品磁强计(VSM)和 Mssbauer 效应研究了纳米复合材料结构、 晶粒尺寸及磁性。结果表明 , 样品中 Co Fe 2O 4的晶粒尺寸随着热处理温度的提高而增加 , 非晶态 SiO 2的存在有效地抑制了 Co Fe 2O 4晶粒的生长。VSM结果表明 , 样品的比饱和磁化强度和矫顽力随 Co Fe 2O 4晶粒尺寸的增加而变大。Mssbauer 效应结果表明 , 随着热处理温度的提高 , 样品从超顺磁和磁有序的混合状态转变为完全的磁有序状态。  相似文献   

3.
γ-Fe2O3/SiO2纳米复合粉体的制备   总被引:2,自引:0,他引:2  
以硝酸铁和正硅酸乙酯分别作为氧化铁和SiO2的前驱体,通过溶胶-凝胶工艺制备了γ-Fe2O3/SiO2纳米复合粉体.若使用氯化铁为氧化铁前驱体,SiO2基体中则会生成α-Fe2O3.当干凝胶热处理温度较低时(T<400℃),复合粉体(硝酸铁为前驱体)以非晶态存在.当T达到600℃时,γ-Fe2O3粒子在SiO2基体中大量形成.随着热处理温度的进一步升高,粉体中开始有α-Fe2Oa杂质生成.使用盐酸做添加剂对复合粉体中γ-Fe2O3粒子大小及颗粒尺寸分布均有显著影响.  相似文献   

4.
采用溶胶-凝胶法以正硅酸乙酯和金属硝酸盐分别作为SiO2和铁氧体的前驱体成功制得Co0.5Zn0.5-Fe2O4/SiO2磁性纳米复合粒子.利用XRD、DSC-TG、Raman和SEM研究了热处理温度和酸添加量对样品晶体结构和晶粒尺寸的影响,并用谢乐公式估算平均晶粒尺寸.最后用振动样品磁场计(VSM)对样品的磁性能进行检测.结果表明,随热处理温度的升高,样品由非晶态转变成SiO2基体中结晶较完整的尖晶石结构的单相铁氧体纳米晶,晶粒尺寸为12.65nm.晶粒尺寸随热处理温度的升高和酸添加量的增加不断变大.对材料的磁性能的研究结果表明,合成的纳米Co0.5Zn0.5Fe2O4/SiO2,其比饱和磁化强度为9.17emu/g,矫顽力为67Oe.  相似文献   

5.
在近球形α-Fe2O3颗粒的悬浮液中,以正硅酸乙酯(TEOS)为硅源,氨水和尿素为催化剂,合成了Fe2O3-SiO2核-壳粒子.应用TEM.XRD对Fe2O3-SiO2核-壳粒子结构进行了测定.研究了TEOS.氨水的浓度对核-壳粒子结构的影响.UV-Vis吸收光谱表明,SiO2壳层消除了Fe2O3纳米粒子的表面悬挂键,产生增强的激子发射,使得核-壳粒子的吸收峰发生蓝移.根据带边吸收峰的波长计算出核-壳粒子中Fe2O3的禁带宽度为2.25 eV.  相似文献   

6.
Al2O3纤维增强SiO2气凝胶复合材料的制备及其隔热机理   总被引:1,自引:1,他引:0  
徐广平  何江荣  宋一华 《材料导报》2013,27(2):112-115,120
以正硅酸乙酯为先驱体,采用溶胶-凝胶工艺制备SiO2溶胶,将其与Al2O3纤维复合,经超临界流体干燥技术制得SiO2气凝胶复合绝热材料。采用透射电子显微镜(TEM)、扫描电子显微镜(SEM)、压力试验机、平板导热仪等测试手段对样品的微观形貌、抗压强度以及热导率等进行了研究。讨论了材料的绝热机理,并对进一步降低SiO2气凝胶热导率的途径进行了概述。结果表明:添加Al2O3纤维能够明显增强SiO2气凝胶的综合力学性能;经过1000℃热处理的复合材料仍保持SiO2气凝胶的纳米多孔结构,这赋予复合材料优异的绝热特性。当Al2O3纤维添加量为8%(质量分数)左右时,可使复合材料同时具有较低的热导率(λ=0.051W/(m.K),298K)和较高的抗压强度(σbc=1.977MPa)。  相似文献   

7.
同步采用无皂乳液聚合法和溶胶-凝胶法制备了聚丙烯酸酯/纳米SiO2复合材料,通过TEM、力学性能、DSC、TG和XRD等检测手段研究了不同有机硅烷偶联剂对聚丙烯酸酯/纳米SiO2复合材料性能的影响.结果表明,分别采用3-甲基丙烯酸氧丙基三甲氧基硅烷(MEMO)和乙烯基三甲氧基硅烷(VTMO)制备的纳米复合材料,力学性能随其用量的增加而同步增强增韧;TEM结果表明,采用MEMO和VTMO制备的聚丙烯酸酯/纳米SiO2复合材料中的纳米SiO2的粒径约20nm,且分布均匀;热性能结果表明,采用乙烯基三乙氧基硅烷(VTEO)制备的纳米复合材料的玻璃化温度(-8.1℃)和热裂解温度(350℃)最高;XRD结果表明,有机硅烷偶联剂的加入降低了纳米复合材料的结晶度.  相似文献   

8.
采用溶胶-凝胶法,以尺寸约10nm的Fe3O4纳米粒子为种子,碱催化正硅酸已酯(TEOS)水解、缩合,制备了磁性可控的核壳结构SiO2/Fe3O4复合纳米粒子.系统研究了醇水比、NH4OH及TEOS的浓度对复合纳米粒子形貌和性能的影响,并分析了SiO2/Fe3O4复合纳米粒子的生成机理.结果表明,SiO2的生长主要是SiO2初级粒子在Fe3O4表面的聚集生长,醇水比为4∶1、NH4OH浓度为0.3mol/L和TEOS浓度低于0.02mol/L时,随TEOS浓度的增大,SiO2壳层增厚,复合粒子饱和磁化强度下降,矫顽力基本不变,仍具有良好的超顺磁性.  相似文献   

9.
单晶多孔α-Fe2O3纳米棒的制备及其催化性能   总被引:1,自引:0,他引:1  
以Fe(NO)3·9H2O和KOH为原料,在100℃下水热反应6h制备了α-FeOOH纳米棒,并在不同温度下对其进行热处理,得到具有一维纳米孔结构的α-Fe2O3单晶.用XRD和TEM对α-FeOOH和热处理产物a-Fe2O3的物相、形貌进行表征,并结合TGA和FT-IR研究了α-FeOOH的热处理过程.结果表明,α-FeOOH在239~295℃温度区间发生脱水相变a-FeOOH→α-Fe2O3.纳米α-Fe2O3很好地保持棒状,但在其表面出现了孔洞,随着温度的升高孔洞趋于愈合.采用DTA考察了α-Fe2O3纳米棒对高氯酸铵(AP)的催化作用.不同温度下热处理得到的α-Fe2O3均使AP的高温分解温度显著降低,其中350℃热处理得到的α-Fe2O3纳米棒使AP高温分解温度最大降幅达71.4℃.  相似文献   

10.
在近球形α-Fe2O3颗粒的悬浮液中,以正硅酸乙酯(TEOS)为硅源,氨水和尿素为催化剂,合成了Fe2O3-SiO2核-壳粒子.应用TEM、XRD对Fe2O3-SiO2核-壳粒子结构进行了测定.研究了TEOS、氨水的浓度对核-壳粒子结构的影响.UV—Vis吸收光谱表明,SiO2壳层消除了Fe2O3纳米粒子的表面悬挂键,产生增强的激子发射,使得核-壳粒子的吸收峰发生蓝移.根据带边吸收峰的波长计算出核-壳粒子中Fe2O3的禁带宽度为2.25eV.  相似文献   

11.
采用静电纺丝法制备了Fe2O3掺杂纳米TiO2的有机无机PVP/Fe2O3-TiO2纤维,经高温焙烧得到Fe2O3-TiO2纳米纤维。利用差动-热重(DSC-TGA)、傅里叶红外光谱(FT-IR)、扫描电镜(SEM)、XRD和比表面积分析仪等对样品进行了表征。以10mg/L亚甲基蓝溶液为底物,研究了Fe2O3掺杂量和焙烧温度等对亚甲基蓝太阳光催化降解效果的影响。结果表明,掺杂量为0.08%、焙烧温度为500℃得到的Fe2O3-TiO2纳米纤维光降解效果最好,达到96.3%,重复使用7次降解率仍在90%以上。  相似文献   

12.
BaFe12O19/SiO2-B2O3微晶玻璃陶瓷的制备和微波性能   总被引:1,自引:0,他引:1  
采用柠檬酸sol-gel工艺合成了BaFe12O19/SiO2-B2O3微晶玻璃陶瓷,研究了SiO2-B2O3玻璃的含量,Ba/Fe原子比和热处理温度对体系析出晶相的影响,以及介电常数和磁异率在1MHz-6GHz频率范围的变化规律,结果表明,休系中SiO2-B2O3玻璃的含量和Ba/Fe比越高,BaF312O19相的析出越困难,前驱体合适的热处理温度为1000℃,介电常数和磁导率基本上随测试频率的增而加下降;介电损耗的最大值为0.43,磁损耗较小。  相似文献   

13.
为了研制生物质气化用纳米Fe2O3掺杂的铁基催化剂,以Fe(NO3)3·9H2O为原料、尿素为沉淀剂,采用均匀沉淀法制备了纳米Fe2O3.同时,利用正交实验探讨了不同工艺参数对合成纳米Fe2O3的影响,并得出了最佳工艺条件.产品分析表明,在反应物n(尿素):n(硝酸铁)=5:1、铁盐浓度为0.20mol/L、沉淀反应温度为115℃的最佳条件下制得的纳米Fe2O3粒子呈球形,分散性好,纯度较高,属立方晶系结构,平均粒径约为21nm.  相似文献   

14.
SiO2-Al2O3干凝胶的制备与性能研究   总被引:3,自引:0,他引:3  
何飞  赫晓东  李垚 《功能材料》2007,38(6):938-941,944
采用二步酸碱催化溶胶-凝胶和常压干燥法,制备了低密度多孔xSiO2-(1-x)Al2O3干凝胶,其中摩尔比x分别取0.9、0.8、0.7和0.6.SiO2凝胶按照n(正硅酸乙酯(TEOS)):n(H2O):n(无水乙醇):n(HCl):n(氨水)=1: 4:7:7.5×10-4:0.0375制备,主要作为二元复合氧化物的网络骨架.Al2O3由廉价的Al(NO3)3·9H2O与NH4OH反应制得.采用BET、XRD、IR、SEM和TEM等实验手段,对xSiO2-(1-x)Al2O3干凝胶在300、600、900、1200℃4个热处理温度下的组织结构进行了对比和分析.结果表明,最终的二元干凝胶是由纳米颗粒组成的非晶网络与Al2O3晶体共同构成的纳米多孔结构,具有高的比表面积和窄的孔径分布.该复合干凝胶中,Al2O3进入SiO2骨架中,形成一定数量的Si-O-Al键,并随着Al含量的增加而增多.其中的Al2O3随着温度的升高,经历γ-AlOOH、γ-Al2O3,最终完全转化成α-Al2O3,SiO2则始终以非晶态形式存在.由于干凝胶中Al2O3的存在,大大提高了材料的热稳定性.  相似文献   

15.
马晓春  徐广飞  胡建成 《材料导报》2012,26(20):78-80,88
以磁性纳米颗粒Fe3O4为核,SnCl4.5H2O、氨水、无水乙醇为原料,采用液相共沉淀法在Fe3O4表面包覆一层SnO2光催化剂。采用X射线衍射仪(XRD)及扫描电镜(SEM)分析了其成分和表面形貌。结果显示:Fe3O4纳米颗粒在实验过程中发生了团聚,尺寸增大;当Fe3O4与SnCl4.5H2O物质的量比为(1∶2)~(1∶4)时,SnO2能被较好地包覆在Fe3O4表面,形成核-壳结构的SnO2/Fe3O4复合光催化材料;600℃热处理能够形成结晶性良好的SnO2晶体,但此时Fe3O4转变为Fe2O3,失去了磁性。  相似文献   

16.
纳米SiO2/环氧树脂复合材料性能研究   总被引:21,自引:0,他引:21  
以纳米SiO2作为增强材料,制备纳米复合材料,研究了不同的纳米SiO2含量对纳米复合材料性能的影响,采用透射电镜对纳米SiO2粒子的分布进行了表征,采用正电子湮没技术(PALS)测试了自由体积的尺寸及浓度。结果表明,当纳米粒子SiO2含量为3%时,自由体积浓度最小,纳米复合材料的性能最佳。  相似文献   

17.
以自然界富产煤炭为原料,通过高温处理、化学氧化及等离子体技术制备了煤基石墨烯,并进一步通过水热合成法将Fe2O3负载在所制石墨烯表面,成功制备了不同质量比的Fe2O3/石墨烯纳米复合材料。采用SEM、TEM等技术手段,研究了Fe2O3/石墨烯纳米复合材料的结构特征;采用电化学工作站和锂电池系统,研究了Fe2O3/石墨烯纳米复合材料的电化学特征。实验结果表明:质量比为50%的Fe2O3/石墨烯纳米复合材料的各项电化学性能最佳。  相似文献   

18.
采用水热法制备了Fe2O3/ZnFe2O4纳米复合材料,使用XRD、TEM、SEM等测试手段对产物进行了表征,并采用紫外-可见分光光度计(UV-Vis)对产物的光学吸收特性进行了研究,结果表明,改变反应物的浓度和Zn掺杂比例可以分别得到Fe2O3/ZnFe2O4复合物和Zn掺杂Fe2O3。Fe2O3和ZnFe2O4的复合可以明显扩展Fe2O3在可见光波段的吸收范围,Zn掺杂Fe2O3样品的吸收可以达到红外波段。  相似文献   

19.
以硝酸铁为铁源,NaOH为沉淀剂合成单分散性良好的纳米α-Fe2O3粒子,然后与纳米TiO2胶体复合制备了纳米α-Fe2O3/TiO2光催化剂。利用动态光散射粒径分析仪、扫描电子显微镜、紫外-可见分光光度计、X射线衍射仪对光催化剂的物相、形貌进行了表征。在室温条件下,以甲醛作为有机污染物,在可见光照射下探讨了纳米α-Fe2O3粒径、α-Fe2O3摩尔分数等对甲醛光催化降解的影响。结果表明,在一定范围内,随着粒径的减小,纳米α-Fe2O3光催化活性增强,在120min内粒径40nm的纳米α-Fe2O3对甲醛的降解效果最好,降解率约为93.05%。与纯TiO2相比,纳米α-Fe2O3/TiO2光催化剂的可见光催化活性明显增强,纳米α-Fe2O3最佳含量为0.20%(摩尔分数)。纳米α-Fe2O3含量过大,纳米α-Fe2O3/TiO2光催化剂的催化活性将降低。  相似文献   

20.
强磁性纳米Fe3O4/SiO2复合粒子的制备及其性能研究   总被引:8,自引:0,他引:8  
本文采用液相沉积法制备出了满足免疫磁珠用磁核的粒径和磁性要求的纳米Fe3O4/SiO2复合粒子.考察了不同的制备条件对复合粒子的粒径和磁性能的影响,并借助不同的分析测试手段对复合粒子的性能进行表征.结果表明:该复合粒子的最佳制备条件为正硅酸乙酯(TEOS)的浓度为0.6mol·L-1,Fe3O4/TEOS物质的量的比为5:1,反应温度为50℃,搅拌速度为800rpm;在此实验条件下制得的复合粒子的平均粒径在20nm左右,呈球形且分散较均匀,比饱和磁化强度为60.5emu·g-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号