首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
酶解法提取多糖条件温和,能提高多糖得率,而酶解用酶种类和浓度可能对多糖的生物活性如α-葡萄糖苷酶抑制活性有一定影响。采用纤维素酶、柚苷酶、β-半乳糖苷酶、α-淀粉酶、中性蛋白酶和碱性蛋白酶6种常用酶分别对桦褐孔菌高温水提粗多糖(High temperature water-extracted polysaccharides,HIOP)进行酶解,测定酶水解前后对其α-葡萄糖苷酶抑制活性的影响。结果显示,与原HIOP在10μg/m L时的α-葡萄糖苷酶抑制率83.72%相比,经α-淀粉酶、β-半乳糖苷酶、柚苷酶、纤维素酶、中性蛋白酶和胃蛋白酶酶解处理后的HIOP,其α-葡萄糖苷酶抑制率显著降低。表明HIOP均不适合用这6种酶酶解法来提取。  相似文献   

2.
为探索制备马鹿茸降血糖肽的最佳工艺条件,以α-葡萄糖苷酶抑制率为指标,从碱性蛋白酶、风味蛋白酶、中性蛋白酶和胰蛋白酶中筛选出两种酶,根据其体外降血糖效果确定酶的作用顺序,再以水解度、α-葡萄糖苷酶抑制率和蛋白质回收率为指标进行单因素试验和正交试验,优化降血糖肽制备工艺条件。结果表明:碱性蛋白酶和风味蛋白酶比中性蛋白酶和胰蛋白酶更适合用于制备马鹿茸降血糖肽。采用碱性蛋白酶-风味蛋白酶顺序对马鹿茸进行水解,所得酶解产物的α-葡萄糖苷酶抑制率、蛋白质回收率和水解度较高,分别为21.11%、39.12%、19.88%。通过单因素试验和正交试验确定双酶酶解最佳工艺条件为先用碱性蛋白酶在p H 8.0、60℃、底物质量分数12%、加酶量5 000 U/g条件下酶解3 h,再用风味蛋白酶于p H 6.5、45℃、底物质量分数5%、加酶量6 000 U/g条件下酶解1 h。双酶分步水解终产物的α-葡萄糖苷酶抑制率受质量浓度的影响,当质量浓度为3 mg/m L时,α-葡萄糖苷酶抑制率可达94.09%,IC50值为1.82 mg/m L。碱性蛋白酶-风味蛋白酶双酶分步水解马鹿茸可获得高α-葡萄糖苷酶抑制率的降血糖肽。  相似文献   

3.
为促进花生蛋白资源的开发利用及发挥花生肽的降血糖作用,采用碱溶酸沉法制备花生蛋白,并利用不同商品蛋白酶水解花生蛋白制备花生肽。以α-葡萄糖苷酶抑制率为评价指标,对蛋白酶进行了筛选。在此基础上,采用单因素试验和响应面试验对花生α-葡萄糖苷酶抑制肽的制备工艺进行了优化。另外,考察了花生蛋白水解度和花生肽α-葡萄糖苷酶抑制活性的相关性。结果表明:与其他商品蛋白酶相比,胰蛋白酶制备的花生肽的α-葡萄糖苷酶抑制活性最高;酶法制备花生α-葡萄糖苷酶抑制肽的最优工艺条件为将花生蛋白于95 ℃加热5 min进行预处理,采用胰蛋白酶水解,水解时间62 min,加酶量8.9%,底物质量浓度4.1 g/100 mL,在最优条件下花生肽α-葡萄糖苷酶抑制率达到(68.82±0.24)%,此时花生蛋白的水解度为10.09%;水解度在8.0%~11.5%范围内与花生肽的α-葡萄糖苷酶抑制活性呈显著正相关。综上,花生蛋白经胰蛋白酶水解后得到的花生肽对α-葡萄糖苷酶具有显著的体外抑制活性。  相似文献   

4.
以鹰嘴豆为原料,以其酶解产物对α-葡萄糖苷酶的抑制率和水解度为指标,比较中性蛋白酶、碱性蛋白酶、木瓜蛋白酶和风味蛋白酶对鹰嘴豆的酶解效果,并进一步对碱性蛋白酶的酶解工艺参数进行响应面法优化。结果表明碱性蛋白酶的酶解效果最好,响应面法优化得到碱性蛋白酶酶解鹰嘴豆制备α-葡萄糖苷酶抑制肽的最佳工艺条件为:酶解时间5.1 h,酶解温度57℃,底物浓度5.2%,p H 10.0,加酶量4 000 U/g。在该工艺条件下,鹰嘴豆蛋白水解度为14.51%,酶解产物对α-葡萄糖苷酶的抑制率可达32.79%。  相似文献   

5.
以核桃仁为原料,以水解度和对α-淀粉酶抑制率为评价指标,正交设计研究核桃蛋白酶解中相关的单酶水解、多酶水解、酶添加顺序、复合酶最佳配方等关键因子。结果表明,单酶对核桃蛋白的水解度大小依次为:碱性蛋白酶中性蛋白酶≈酸性蛋白酶胃蛋白酶胰蛋白酶,而酶解产物对α-淀粉酶抑制率大小依次为:酸性蛋白酶中性蛋白酶碱性蛋白酶胃蛋白酶胰蛋白酶,并发现依次添加单酶比同时添加的效果更好。综合考虑,先加中性蛋白酶再加碱性蛋白酶的添加方式最佳,可使核桃蛋白水解度达到40%左右,同时还保证酶解产物对α-淀粉酶抑制率较大,可达到85.9%。  相似文献   

6.
以藜麦麸皮为原料,利用高浓度乙醇粗提藜麦麸皮蛋白,并用4种蛋白酶(碱性、中性、复合、风味蛋白酶)酶解蛋白得到多肽。测定醇沉蛋白的分子质量分布、氨基酸组成以及4种蛋白酶的酶解能力和所得多肽的活性。结果表明,藜麦麸皮蛋白分子质量主要条带分布在22.8 k、39.1 k和52.7 kDa,其含有17种氨基酸,必需氨基酸/总氨基酸为35.17%,疏水性氨基酸/总氨基酸为28.48%。碱性蛋白酶对藜麦麸皮蛋白具有较高的水解能力,在120 min时达到13%,肽得率高达88.88%。风味蛋白酶酶解的多肽具有较好的α-葡萄糖苷酶抑制活性和Fe^2+螯合能力,分别为81.67%和89.03%;碱性蛋白酶酶解的多肽对酪氨酸酶的抑制率达到73.17%;中性蛋白酶酶解的多肽对DPPH自由基清除能力较强,为84.91%。研究结果表明藜麦多肽具有良好的生物活性,为藜麦麸皮进一步开发利用提供了一定的理论依据。  相似文献   

7.
以铁皮石斛为原料,选用传统热水提取法、酶法提取、闪式提取法、超声波提取法、冻融提取法5种提取方式在各自最佳参数上提取铁皮石斛粗多糖,以多糖得率、平均分子质量、多糖纯度、多糖黏度、α-葡萄糖苷酶抑制率和α-淀粉酶抑制率为指标对5种提取方式进行综合评估。结果表明:冻融提取法所得铁皮石斛多糖得率和平均分子质量最高,多糖得率高达37.1%,其对α-葡萄糖苷酶和α-淀粉酶抑制活性相对最高,这是由于冻融辅助法较好地保留了多糖的分子结构及其生物活性。  相似文献   

8.
本文以花生粕为原料,通过碱溶酸沉法提取花生蛋白,利用凯式定氮法测得其含量87.7%.继续采用超声波辅助酶法制取花生多肽,以多肽得率和α-淀粉酶抑制率为指标,考察了酶的种类、超声功率、超声时间、底物浓度、酶添加量和酶解时间等因素对α-淀粉酶抑制肽的影响,确定最优蛋白酶为风味蛋白酶,在单因素的基础上设计响应面试验对酶解条件...  相似文献   

9.
为了探究桦褐孔菌高温水提粗多糖(High temperature water-extracted polysaccharides,HIOP)中结合蛋白质组成键型与其α-葡萄糖苷酶抑制活性的关系,用4种不同的蛋白酶对HIOP进行酶解,测定蛋白酶水解后对其分子量组成及α-葡萄糖苷酶抑制活性的影响。结果显示,与原HIOP在10μg/m L时的α-葡萄糖苷酶抑制率83.72%相比,经中性蛋白酶、碱性蛋白酶、胃蛋白酶和胰蛋白酶酶解处理后的HIOP,α-葡萄糖苷酶抑制率最低分别为53%、65%、6.5%和7.1%,其中胃蛋白酶和胰蛋白酶酶解处理显著降低了HIOP的α-葡萄糖苷酶抑制活性,表明HIOP中结合蛋白在HIOP的α-葡萄糖苷酶抑制活性中有一定作用。结合四种蛋白酶的作用效果与作用键型推测,HIOP中结合蛋白的活性中心可能含有芳香族氨基酸、酸性氨基酸、赖氨酸或精氨酸,破坏此类肽键,α-葡萄糖苷酶抑制活性明显降低,而四种蛋白酶酶解均未使HIOP分子量发生较大改变,说明四种蛋白酶酶解仅影响了HIOP与α-葡萄糖苷酶活性中心结合的部位。  相似文献   

10.
研究紫菜酶解α-葡萄糖苷酶抑制活性肽与锌螯合反应的条件,并对锌-螯合-糖苷酶抑制剂活性肽的胃肠消化稳定性进行评价。对条斑紫菜在一定条件下进行内切与外切蛋白酶的复合酶解获得具备α-葡萄糖苷酶高抑制活性的多肽,采用超滤纳滤双膜组合分离后旋转蒸发浓缩冻干,获得的多肽质量浓度为1 mg/mL时对0.5 mg/mL的α-葡萄糖苷酶抑制率达68%;利用α-葡萄糖苷酶抑制活性肽与锌溶液反应进行螯合条件优化,螯合的最佳条件为:时间1.5 h,pH 4.5,温度37 ℃,质量浓度6 mg/mL,得到的锌-螯合-糖苷酶抑制剂活性肽溶液螯合度为25.6%,螯合后对α-葡萄糖苷酶抑制活性提高到79.8%;建立体外胃肠消化模型,以α-葡萄糖苷酶抑制活性为指标,评价制备的锌-螯合-糖苷酶抑制剂活性肽的胃肠消化耐受性,结果表明:经过不同酶与底物比、时间胃消化后α-葡萄糖苷酶抑制活性下降均在7%左右,十二指肠消化后,抑制活性下降均在5%以内,具有良好的胃肠消化稳定活性。  相似文献   

11.
目的:确定洋葱多肽制备工艺,为其药用资源的开发利用奠定基础。方法:采用醇沉和等电点沉淀法提取洋葱蛋白,以α-淀粉酶抑制率和水解度为考察指标,筛选水解洋葱蛋白效果最优的2种单酶,采用正交实验确定复合酶水解最佳工艺条件。结果:所提取的洋葱蛋白含量为26.7%,提取率为0.354%;复合酶制备洋葱多肽的最佳工艺条件为:取0.20 g/m L洋葱蛋白溶液,按酶底比0.02:1加入酸性蛋白酶,在p H3.5、55℃条件下水解2 h,灭酶后再按酶底比0.0033:1加入胃蛋白酶,在p H1.5、37℃条件下水解2 h,灭酶后冷却至室温,20000 r/min冷冻离心20 min,取上清液冷冻干燥即得洋葱多肽冻干粉。结论:该法操作简单,绿色环保,制备的洋葱多肽对α-淀粉酶抑制率达86.85%,水解度30.12%,可用于洋葱多肽后续药效学研究。  相似文献   

12.
为更好利用红豆蛋白资源,研究酶解制备红豆多肽的工艺方法,该试验以红豆蛋白为原料,选取碱性蛋白酶、木瓜蛋白酶、胃蛋白酶、中性蛋白酶、胰蛋白酶共5种蛋白酶进行水解,以蛋白水解度为指标筛选出作用较佳的复合酶。在单因素试验的基础上,利用正交试验优化红豆蛋白多肽的制备工艺,以DPPH自由基、·OH、O2-·、ABTS+自由基清除率为测定指标,评价红豆蛋白的抗氧化活性。结果表明:5种蛋白酶中,碱性蛋白酶和木瓜蛋白酶复合水解制备红豆多肽效果较佳,经过工艺优化后最佳水解工艺为酶活比6∶4,反应pH值7.5,反应温度52℃,底物浓度5%,加酶量800 U/g,反应时间5 h,且抗氧化活性测定结果表明红豆多肽具有一定的抗氧化活性。  相似文献   

13.
通过响应面法优化裙带菜α-葡萄糖苷酶抑制活性肽的制备工艺,以期得到一种调控餐后血糖的新型有效成分。选择五种蛋白酶酶解裙带菜蛋白筛选最佳水解酶,研究底物浓度、加酶量、pH、酶解温度、酶解时间对产物抑制率和水解度的影响,并根据单因素实验结果运用Box-Behnken设计原理进行三因素三水平的响应面优化试验,测定酶解液的分子量并绘制酶抑制动力学曲线。结果表明,最佳酶解条件为碱性蛋白酶,底物浓度7.11%,pH10.14,温度47 ℃,加酶量10000 U/g,反应时间1 h,在此条件下,酶解液的抑制率为51.17%,与预测值接近;裙带菜酶解液多为小肽,半抑制浓度为46.079 mg/mL,抑制类型为典型的可逆混合型抑制。本研究获得了裙带菜α-葡萄糖苷酶抑制活性肽的最佳制备工艺和理化性质,为开发新型降血糖活性肽提供理论基础和实验依据。  相似文献   

14.
以玉米黄粉为原料,以水解度和α-葡萄糖苷酶抑制率为指标,通过单因素和正交实验得到碱性蛋白酶和风味蛋白酶最适酶解条件,同时优化双酶复合两步水解法最佳酶解顺序。结果表明:首先添加风味蛋白酶,最适酶解温度50℃、pH 6.5、质量分数5.5%、反应时间4 h进行酶解;然后添加碱性蛋白酶,最适酶解温度50℃、pH 8.5、质量分数2%、反应时间2 h酶解完成得到的玉米蛋白水解液α-葡萄糖苷酶抑制率最高,为81.38%;对水解液进行超滤,得到<1 ku组分的α-葡萄糖苷酶抑制率最高,为90.87%,且该组分具有较高的抗氧化活性。  相似文献   

15.
原料取青稞蛋白,通过单因素和响应面试验,以α-葡萄糖苷酶抑制活性为主要测定指标,筛选最适蛋白酶及最佳工艺条件。采用超滤和Sephadex G-15凝胶层析技术对水解肽进行分离纯化。通过液质联用获得具有较高降血糖活性的肽序列并对其氨基酸序列进行分析。结果表明:水解最适蛋白酶为胰蛋白酶,最佳水解条件参数为加酶量为12 000 U/g、底物质量浓度为3 g/100mL、酶解时间为5 h。该条件下水解液α-葡萄糖苷酶抑制活性达70.96%。水解液经过超滤获得最佳组分E-4,Sephadex G-15凝胶层析得到最优组分E-43,其对α-葡萄糖苷酶和α-淀粉酶的半抑制浓度值(IC50)分别为0.26、6.74 mg/mL;其对ABTS+、DPPH自由基清除能力的半抑制浓度值分别为2.62、4.23 mg/mL。经液相色谱-串联质谱(LC-MS/MS)测定,其氨基酸序列为Gly-Phe-Ser-Gly-Ser-Gly-Gly-Lys、Gly-Val-Gly-Ala-Gly-Ala-Ala-Arg,荷质比m/z为348.67、329.68,分子质量为695.32 u、657.36 u,具有降血糖和抗氧化活性的两条八肽中N端均为亲水氨基酸,C端均为碱性氨基酸,且均含亲水、疏水和碱性氨基酸。  相似文献   

16.
以紫山药粉为原料,对微波预处理-超声波提取紫山药多糖的工艺进行优化,并以α-葡萄糖苷酶抑制模型研究其对α-葡萄糖苷酶活性的抑制作用。通过单因素及正交试验确定最佳提取工艺为料液比1∶40(g/mL)、微波功率300 W、微波时间30 s、超声功率270 W、超声时间30 min。在最佳工艺条件下,紫山药多糖平均得率为11.12%。醇沉后的紫山药多糖粉末中多糖的质量分数为45.80%。α-葡萄糖苷酶活性抑制试验中,紫山药多糖表现出明显的抑制作用,对α-葡萄糖苷酶抑制能力较阿卡波糖弱。  相似文献   

17.
以薏苡仁为原料,考察闪提时间、提取电压、提取转速对薏苡仁多糖得率的影响,采用响应面优化薏苡仁多糖闪式提取工艺,并对其生物活性进行研究。结果表明:最佳提取工艺为闪提时间101 s、提取电压161 V、提取转速6 100 r/min,此条件下薏苡仁多糖平均得率为9.03%,与预测值接近。同时薏苡仁多糖对DPPH自由基和ABTS阳离子自由基清除能力效果明显,清除率分别达到60.21%和40.06%;对·OH清除效果一般,清除率为21.65%,表明薏苡仁多糖具有良好的抗氧化能力。薏苡仁多糖对α-淀粉酶和α-葡萄糖苷酶的抑制能力效果明显,并且随着浓度的增加,抑制率增加,分别达到81.34%和78.88%,说明薏苡仁多糖对α-淀粉酶和α-葡萄糖苷酶具有良好的抑制作用。  相似文献   

18.
从番石榴叶中提取总黄酮以及多糖,测定其对α-葡萄糖苷酶以及猪胰液α-淀粉酶抑制活性以评估其降血糖活性。结果表明番石榴叶中提取的黄酮类以及多糖类化合物对这2种酶都具有较好的抑制活性,其中黄酮和多糖对蔗糖酶的抑制率分别为63.5%和29.3%,对麦芽糖酶的抑制率分别为47.7%和20.6%,对α-淀粉酶的抑制率分别为54.4%和31.9%。此外,所提取的总黄酮以及多糖对α-葡萄糖苷酶以及猪胰液α-淀粉酶的抑制活性存在协同作用,两者混合的酶抑制活性更好,其中黄酮和多糖的混合物对蔗糖酶,麦芽糖酶以及α-淀粉酶的抑制率分别为75.8%,53.5%和60.1%。  相似文献   

19.
王洁 《中国油脂》2021,46(9):28-32
以蚕豆为原料,通过碱溶酸沉法得到蚕豆蛋白,再通过酶解制备具有α-葡萄糖苷酶抑制作用的蚕豆蛋白酶解物。以α-葡萄糖苷酶抑制率与水解度为指标,考察蛋白酶种类、酶解温度、酶解pH、料液比、加酶量与酶解时间对蚕豆蛋白酶解的影响,在此基础上采用响应面法对工艺参数进行优化。结果表明:酶解蚕豆蛋白制备具有α-葡萄糖苷酶抑制作用酶解物的最优工艺条件为以碱性蛋白酶为最适用酶、酶解温度50 ℃、酶解pH 8.5、酶解时间4.3 h、料液比1∶ 10、加酶量14 000 U/g,在此条件下酶解物α-葡萄糖苷酶抑制率为(38.58±0.87)%,蛋白水解度为22.87%。  相似文献   

20.
以白芸豆为原料,酶法制备多肽。以α-淀粉酶抑制率为指标,比较酸性、中性和碱性蛋白酶的酶解效果。结果表明:3.350酸性蛋白酶的酶解效果最好。通过加酶量、酶解p H值、酶解温度和酶解时间的单因素试验和正交试验,得到制备白芸豆多肽的最佳工艺条件为:加酶量3 200 U/g、酶解p H 2.2、酶解温度55℃、酶解时间60 min,此条件下白芸豆多肽α-淀粉酶抑制率为80.82%。热稳定性研究表明,白芸豆多肽的热稳定性高于α-淀粉酶抑制剂(α-amylase inhibitor,α-AI)粗提液,该多肽在85、90℃条件下的α-淀粉酶抑制活性能保持更长时间。凝胶电泳分析表明白芸豆多肽的分子质量为7.53~9.09 ku。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号