共查询到20条相似文献,搜索用时 0 毫秒
1.
非完整移动机器人的轨迹跟踪控制 总被引:13,自引:2,他引:13
讨论基于运动学模型的非完整移动机器人的轨迹跟踪控制问题。在一定的假设条件下实现了全局指数跟踪,该假设允许参考模型角速度和平移速度均趋于零,并将该方法推广到 动力学模型。仿真例子证明了该方法的有效性。 相似文献
2.
Altan Onat 《Advanced Robotics》2013,27(14):913-928
This paper presents an approach for the trajectory tracking control of nonholonomic wheeled mobile robots (WMR) by combining one of the existing adaptive control methods and multiple identification models. The overall system includes two types of controllers in the control scheme. A kinematic controller developed by using kinematic model produces the required linear and angular velocities of the robot for tracking a reference trajectory. These required velocities are used to calculate the torques using an adaptive dynamic controller with multiple models. The proposed method uses the multiple models of the WMR for the identification of the dynamic parameters and performs switching between the given models. The models used in the identification are identical, except for the initial estimates of the parameters. By using an adaptive dynamic controller with multiple models of the WMR, enhancement in transient response is obtained. Stability analysis of the overall system is given, and simulation results are presented to demonstrate the effective performance of the adaptive control by using multiple models approach. 相似文献
3.
4.
This paper discusses the problem of adaptive sliding mode trajectory tracking control for wheeled mobile robots in the presence of external disturbances and inertia uncertainties. A new fast nonsingular terminal sliding mode surface without any constraint is proposed, which not only avoids singularity, but also retains the advantages of sliding mode control. In order to implement the trajectory tracking mission, the error dynamic system is divided into a second-order subsystem and a third-order one. First, an adaptive fast nonsingular terminal sliding mode control law of the angular velocity is constructed for stabilising the second-order subsystem in finite time. Then, another adaptive fast nonsingular terminal sliding mode control law of the linear velocity is designed to guarantee the stability of the third-order subsystem. Finally, a simulation example is provided to demonstrate the validity of the proposed control scheme. 相似文献
5.
结合一类非完整移动机器人的运动学模型和链式转换,在质心与几何中心重合的情况下,研究含有未知参量的非完整移动机器人的跟踪控制问题.首先,利用针孔摄像机模型提出一种基于视觉伺服的运动学跟踪误差模型;然后在此模型下,将动态反馈、Back-stepping技巧与自适应控制相结合,设计一个区别于以往处理方法、含有两个动态反馈的自适应跟踪控制器,从而实现动力学系统的全局渐近轨迹跟踪,并通过李亚普诺夫方法严格证明闭环系统的稳定性和估计参数的有界性;最后,利用Matlab仿真验证所提出的控制器的有效性. 相似文献
6.
The trajectory tracking control problem of dynamic nonholonomic wheeled mobile robots is considered via visual servoing feedback. A kinematic controller is firstly presented for the kinematic model, and then, an adaptive sliding mode controller is designed for the uncertain dynamic model in the presence of parametric uncertainties associated with the camera system. The proposed controller is robust not only to structured uncertainties such as mass variation but also to unstructured one such as disturbances. The asymptotic convergence of tracking errors to equilibrium point is rigorously proved by the Lyapunov method. Simulation results are provided to illustrate the performance of the control law. 相似文献
7.
The trajectory tracking control problem of dynamic nonholonomic wheeled mobile robots is considered via visual servoing feedback.A kinematic controller is firstly presented for the kinematic model,and ... 相似文献
8.
9.
Meiying Ou Haibin Sun Shengwei Gu Yangyi Zhang 《International journal of systems science》2017,48(15):3233-3245
This paper investigates the distributed finite-time trajectory tracking control for a group of nonholonomic mobile robots with time-varying unknown parameters and external disturbances. At first, the tracking error system is derived for each mobile robot with the aid of a global invertible transformation, which consists of two subsystems, one is a first-order subsystem and another is a second-order subsystem. Then, the two subsystems are studied respectively, and finite-time disturbance observers are proposed for each robot to estimate the external disturbances. Meanwhile, distributed finite-time tracking controllers are developed for each mobile robot such that all states of each robot can reach the desired value in finite time, where the desired reference value is assumed to be the trajectory of a virtual leader whose information is available to only a subset of the followers, and the followers are assumed to have only local interaction. The effectiveness of the theoretical results is finally illustrated by numerical simulations. 相似文献
10.
针对受非完整约束的移动机器人的轨迹跟踪问题,提出了一种基于模糊CMAC的轨迹跟踪控制策略。该策略利用模糊CMAC神经网络逼近移动机器人动力学模型的非线性和不确定,同时与速度误差结合起来构成力矩控制器,并用滑模项来补偿不确定性扰动对系统的影响。李亚普诺夫稳定性定理保证了系统的稳定性和跟踪误差的渐近收敛,仿真结果进一步验证了所提方法的有效性。 相似文献
11.
12.
The problem of robust finite-time trajectory tracking of nonholonomic mobile robots with unmeasurable velocities is studied. The contributions of the paper are that: first, in the case that the angular velocity of the mobile robot is unmeasurable, a composite controller including the observer-based partial state feedback control and the disturbance feed-forward compensation is designed, which guarantees that the tracking errors converge to zero in finite time. Second, if the linear velocity as well as the angular velocity of mobile robot is unmeasurable, with a stronger constraint, the finite-time trajectory tracking control of nonholonomic mobile robot is also addressed. Finally, the effectiveness of the proposed control laws is demonstrated by simulation. 相似文献
13.
Yasmine Koubaa Mohamed Boukattaya Tarak Damak 《Applied Artificial Intelligence》2013,27(9-10):924-938
ABSTRACTThis article designs a novel adaptive trajectory tracking controller for nonholonomic wheeled mobile robot under kinematic and dynamic uncertainties. A new velocity controller, in which kinematic parameter is estimated, produces velocity command of the robot. The designed adaptive sliding mode dynamic controller incorporates an estimator term to compensate for the external disturbances and dynamic uncertainties and a feedback term to improve the closed-loop stability and account for the estimation error of external disturbances. The system stability is analyzed using Lyapunov theory. Computer simulations affirm the robustness of the designed control scheme. 相似文献
14.
An adaptive output feedback tracking controller for nonholonomic mobile robots is proposed to guarantee that the tracking errors are confined to an arbitrarily small ball. The major difficulties are caused by simultaneous existence of nonholonomic constraints, unknown system parameters and a quadratic term of unmeasurable states in the mobile robot dynamic system as well as their couplings. To overcome these difficulties, we propose a new adaptive control scheme including designing a new adaptive state feedback controller and two high-gain observers to estimate the unknown linear and angular velocities respectively. It is shown that the closed loop adaptive system is stable and the tracking errors are guaranteed to be within the pre-specified bounds which can be arbitrarily small. Simulation results also verify the effectiveness of the proposed scheme. 相似文献
15.
A four-wheel steered mobile robot is fit for a higher power or improvement in the movement speed of a robot than a two-independent wheeled one. Since a steered mobile robot that slips very often cannot apply a popular dead-reckoning method using rotary encoders, it is desirable to use external sensors such as cameras. This paper describes a method to trace a straight line for four-wheel steered mobile robots using an image-based control method. Its controller is designed as a fuzzy controller and evaluated through some simulations and real robot. 相似文献
16.
基于轨迹跟踪车式移动机器人编队控制 总被引:2,自引:0,他引:2
针对车式移动机器人的运动学模型特点, 提出一种基于轨迹跟踪多机器人编队控制方法. 首先利用编队结构参数确定队形, 根据编队轨迹和相关参数生成虚拟机器人, 把编队控制转化为跟随机器人对虚拟机器人的轨迹跟踪; 然后运用反步法构造车式移动机器人轨迹跟踪系统的Lyapunov 函数, 通过使该函数负定, 得到跟随机器人的轨迹跟踪控制器; 最后在Microsoft robotics developer studio 4 (MRDS4) 中搭建3D 仿真平台, 设计了3 组实验, 所得结果表明了所提出方法的有效性. 相似文献
17.
Wenjie Dong 《International journal of systems science》2013,44(5):797-808
In this article, cooperative output feedback control of a group of nonholonomic mobile agents is considered. Distributed observer-based cooperative control laws are proposed with the aid of Lyapunov techniques and results from graph theory. Robustness of the stability of the closed-loop systems with the proposed control laws is considered. The effectiveness of the proposed controllers is verified by simulation results. 相似文献
18.
Liu Changxin Gao Jian Xu Demin 《International Journal of Control, Automation and Systems》2017,15(5):2313-2319
This paper studies the tracking problem of nonholonomic wheeled robots subject to control input constraints. In order to take optimality considerations into account while designing saturated tracking controllers, a Lyapunov-based predictive tracking controller is developed, in which the contractive constraint is characterized by a backup global saturated tracking controller. Theoretical results on ensuring global feasibility and closed-loop stability of the controller are provided. In addition, the proposed methodology admits suboptimal solutions. Finally, numerical simulations are performed to verify the effectiveness of the proposed control strategy.
相似文献19.
This paper proposes a sliding‐mode control (SMC) method to achieve practical cooperative consensus tracking for a network of multiple nonholonomic wheeled mobile robots (MNWMRs) with input disturbances. A novel SMC surface under the nonholonomic constraints is first formulated to characterize the network communication interactions among the networked robots under the framework of polar coordinates. A unified distributed consensus tracking strategy is then proposed by systematically combining a position controller and a direction controller. Furthermore, a simple yet general criterion is derived to achieve the desired practical consensus of trajectory tracking and posture stabilization for MNWMRs. In particular, for a specific common consensus trajectory, the complete asymptotic tracking in heading direction can be fully guaranteed when the perfect asymptotic position‐tracking errors are realized. Accordingly, the developed consensus tracking strategy for MNWMRs demonstrates some advantages of control performance including stability, robustness, and effectiveness over the existing control method proposed for their single‐robot counterparts. Some comparative simulation results are given to confirm the effectiveness of the proposed cooperative consensus control method. 相似文献
20.
Lixia Liu Jinwei Yu Jinchen Ji Zhonghua Miao 《International journal of systems science》2013,44(8):1556-1567
This paper addresses the cooperative adaptive consensus tracking for a group of multiple nonholonomic mobile robots, where the nonholonomic robot model is assumed to be a canonical vehicle having two actuated wheels and one passive wheel. By integrating a kinematic controller and a torque controller for the nonholonomic robotic system, a cooperative adaptive consensus tracking strategy is developed for the uncertain dynamic models using Lyapunov-like analysis in combination with backstepping approach and sliding mode technique. A key feature of the developed adaptive consensus tracking algorithm is the introduction of a directed network topology into the control constraints based on algebraic graph theory to characterise the communication interaction among robots, which plays an important role in realising the cooperative consensus tracking with respect to a specific common reference trajectory. Furthermore, a novel framework is proposed for developing a unified methodology for the convergence analysis of the closed-loop control systems, which can fully ensure the desired adaptive consensus tracking for multiple nonholonomic mobile robots. Subsequently, illustrative examples and numerical simulations are provided to demonstrate and visualise the theoretical results. 相似文献