首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Twenty microalgal strains were investigated in photoautotrophic flask cultures for their potential for eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) production. The highest EPA proportion (% of total fatty acids) was produced by Monodus subterraneus UTEX 151 (34.2%), followed by Chlorella minutissima UTEX 2341 (31.3%) and Phaeodactylum tricornutum UTEX 642 (21.4%). The highest DHA proportion (% of total fatty acids) was obtained in Crypthecodinium cohnii UTEX L1649 (19.9%), followed by Amphidinium carterae UTEX LB 1002 (17.0%) and Thraustochytrium aureum ATCC 28211 (16.1%). Among the 20 strains screened, the EPA yield was high in M. subterraneus UTEX 151 (96.3 mg/L), P. tricornutum UTEX 642 (43.4 mg/L), Chl. minutissima UTEX 2341 (36.7 mg/L), and Por. cruentum UTEX 161 (17.9 mg/L) owing to their relatively high biomass concentrations. The DHA yield was high in C. cohnii UTEX L1649 (19.5 mg/L) and A. carterae UTEX LB 1002 (8.6 mg/L). Heterotrophic growth of these 20 microalgae was also tested on two different carbon sources, acetate and glucose. All microalgae except Nannochloropsis oculata UTEX LB 2164 showed growth on glucose (5 g/L) under heterotrophic conditions. Twelve of them could grow heterotrophically when acetate (1 g/L) was used as their sole carbon and energy source.  相似文献   

2.
Seed oils from Acer species are a potential source of the nutraceutical fatty acids, nervonic acid (cis‐15‐tetracosenoic acid, NA), and γ‐linolenic acid (cis‐6,9,12‐octadecatrienoic acid, GLA). To further characterize the genus, seed fatty acid content and composition were determined for 20 species of Acer. Fatty acid content ranged from 8.2% for Acer macrophyllum to over 36% for A. mono and A. negundo. The presence of very‐long‐chain fatty acids (VLCFA), with chain length of 20‐carbons or greater, and GLA were characteristic features of the seed oils. In all species, erucic acid (cis‐13‐docosenoic acid, EA) was the predominant VLCFA with the highest level of NA being only 8.6% in A. olivianum. Regioselective lipase digestion demonstrated that VLCFA are largely absent from the sn‐2 position of seed triacylglycerol, whereas GLA is primarily located at this position. Five Acer species contained low levels (<2%) of cis‐12‐octadecenoic acid and cis‐14‐eicosenoic acid, uncommon n‐6 fatty acids not previously reported from Acer.  相似文献   

3.
The essential fatty acid γ‐linolenic (GLA, C18:3n‐6), which has several pharmaceutical properties, has been concentrated from the seed oil of three plant species, Borago officinalis, Anchusa azurea and Echium fastuosum. The process was effected through one single and ecological step: simultaneous seed oil extraction/saponification/GLA concentration. Finally, the mother liquor containing the GLA concentrate was stored at low temperature to crystallize saturated fatty acids and further increase GLA purity. Two variables affecting the process were found: water content in the saponification mixture and filtration temperature. Best results were obtained from B. officinalis (GLA purity 68%, GLA yield 64%), although closely followed by the concentrates from the other species.  相似文献   

4.
Shin  Kyong-Oh  Kim  Kunpyo  Jeon  Sanghun  Seo  Cho-Hee  Lee  Yong-Moon  Cho  Yunhi 《Lipids》2015,50(10):1051-1056
Ceramide 1 (Cer1), a Cer species with eicosasphingenine (d20:1) amide‐linked to two different ω‐hydroxy fatty acids (C30wh:0:C32wh:1), which are, in turn, ester‐linked to linoleic acid (LNA; 18:2n‐6), plays a critical role in maintaining the structural integrity of the epidermal barrier. Prompted by the recovery of a disrupted epidermal barrier with dietary borage oil [BO: 36.5 % LNA and 23.5 % γ‐linolenic acid (GLA; 18:3n‐6)], in essential fatty acid (EFA)‐deficient guinea pigs, we further investigated the effects of BO on the substitution of ester‐linked GLA for LNA in these two epidermal Cer1 species by LC–MS in positive and negative modes. Dietary supplementation of BO for 2 weeks in EFA‐deficient guinea pigs increased LNA ester‐linked to C32wh:1/d20:1 and C30wh:0/d20:1 of Cer1. Moreover, GLA ester‐linked to C32wh:1/d20:1, but not to C30wh:0/d20:1, of Cer1 was detected, which was further confirmed by the product ions of m/z 277.2 for ester‐linked GLA and m/z 802.3 for the deprotonated C32wh:1/d20:1. C20‐Metabolized fatty acids of LNA or GLA were not ester‐linked to these Cer1 species. Dietary BO induced GLA ester‐linked to C32wh:1/d20:1 of epidermal Cer1.  相似文献   

5.
Seed oils from five legume cultivars of Phaseolus vulgaris, grown in Japan, were extracted and classified by thin‐layer chromatography (TLC) into seven fractions: hydrocarbons (HC; 0.7–1.4 wt‐%), steryl esters (SE; 1.7–3.3 wt‐%), triacylglycerols (TAG; 33.8–45.9 wt‐%), free fatty acids (FFA; 0.6–1.5 wt‐%), sn‐1,3‐diacylglycerols (1,3‐DAG; 0.3–1.0 wt‐%), sn‐1,2‐diacylglycerols (1,2‐DAG; 0.4–1.2 wt‐%) and phospholipids (PL; 49.4–58.8 wt‐%). Fatty acids derivatized as methyl esters were analyzed by gas chromatography (GC) and a flame ionization detector. Molecular species and the fatty acid distribution of TAG isolated from the total lipids in the beans were analyzed by a combination of argentation‐TLC and GC. A modified argentation‐TLC procedure, developed to optimize the separation of the complex mixture of total TAG, provided 18 different groups of TAG, based on both the degree of unsaturation and the total length of the three acyl chains of fatty acid groups. SDT (3.2–4.2 wt‐%), M2T (3.8–5.0 wt‐%), D3 (4.8–5.9 wt‐%), MDT (8.0–13.9 wt‐%), D2T (12.5–15.8 wt‐%), MT2 (19.4–22.7 wt‐%), DT2 (17.8–23.5 wt‐%) and T3 (9.2–13.0 wt‐%) were the main TAG components. The dominant fatty acids of TAG were α‐linolenic (48.5–57.8 wt‐%) and linoleic (16.7–25.8 wt‐%) acids, with appreciable amounts of palmitic (8.3–13.2 wt‐%) and oleic (7.8–13.8 wt‐%) acids. The high content of α‐linolenic acid in the cultivars of P. vulgaris could very likely play a beneficial role in reducing the risk of coronary heart disease among the large populations consuming them in Japan.  相似文献   

6.
Nannochloropsis oculata and Chlorella sp. were cultivated in industrial scale bioreactors 300?L, under full sunlight and artificial light during night-time at various temperatures. The most abundant fatty acids were C18:3n-3 and C16:0 in Chlorella sp., whereas in N. oculata C16:0, eicosapentaenoic acid (EPA) and C16:1n-9 were predominant. Brachionus plicatilis cultivated in 2,500-L tanks on N. oculata, Chlorella sp. and Saccharomyces cerevisiae, was able to de novo synthesize as well as to elongate and desaturate pre-existing fatty acids in the feed. When fed with S. cerevisiae, B. plicatilis synthesized lipids containing EPA and docosahexaenoic acid (DHA), despite the fact that these fatty acids were absent in yeast lipids. Brachionus fed with Nannochloropsis synthesized DHA in non-negligible quantities. Brachionus enriched with various commercial preparations incorporated into its lipids substrate fatty acids but also synthesized new fatty acids such as C16:1n-9, C18:1n-9, C18:2n-6, EPA and DHA. Neutral lipid was the main lipid fraction while phospholipids predominated over glycolipids plus sphingolipids. The major amounts of EPA and DHA were observed in neutral lipids, noteworthy quantities of these fatty acids were also incorporated into body phospholipids. Interestingly, the high n-3 fatty acids content of rotifer lipids was retained even after the rotifers were grown in low n-3 fatty acid media.  相似文献   

7.
Seeds from 20 species belonging to Boraginaceae, subfamilies Boraginoideae and Heliotropioideae, were surveyed in a search for new sources of γ‐linolenic acid (GLA) and stearidonic acid (SDA). Seed oil content ranged from 7.5% in Echium humile ssp. pycnanthum to 28.8% in Anchusa undulata. GLA ranged from 0.2% of total fatty acids in Heliotropium undulatum to 20.2% in Lithodora maroccana. This last species may be considered as new source of GLA. GLA content was also tested in other Lithodora species from the south east of Spain, to compare GLA percentages among related taxa. GLA amounts in all Echium species reached approximately 12%, in good agreement with previous findings in other European Echium species. SDA ranged from an absence in several Cynoglossum species to 16.2% in Echium humile ssp. pycnanthum, which may be considered as a new source of this fatty acid.  相似文献   

8.
HPLC analysis of Echium plantagineum seed oil shows a complex triacylglycerol (TAG) profile. TAG species were separated on an analytical scale by HPLC and their fatty acid (FA) composition is reported. GLC analyses showed that some TAG fractions reached a stearidonic acid (SDA, 18:4n‐3) percentage significantly higher than that in the original oil. TAG separation on a bigger scale was also essayed, by means of a gravimetric normal‐phase chromatographic column, using silver ion‐silica gel as stationary phase. Gradient elution with solvents of increasing polarity was applied, allowing the separation of valuable TAG species containing γ‐linolenic acid (GLA, 18:3n‐6), α‐linolenic acid (ALA, 18:3n‐3) and SDA as the main constituents (more than 85% of the total FA). An enzymatic hydrolysis reaction showed the distribution of FA in the isolated species of TAG. SDA was the major FA in the sn‐2 position (more than 50% of total FA), followed by ALA (19%) and GLA (18.5%).  相似文献   

9.
The lipid composition of nine thermophilic and nine mesophilic species of seven genera of fungi were compared. The total lipids varied between 8.0% and 54.1% with most fungi possessing between 8.0% and 18.3% lipids. The predominant fatty acids were found to be palmitic, oleic and linolenic. Lesser amounts of arachidic, linolenic, palmitoleic, pentadecanoic, myristic and lauric acids were found. The mesophiles varied between 0% and 18.5% linolenic acid, while the thermophiles did not contain any appreciable linolenic acid (<0.5%). The mesophile,Mucor globosus, and the thermophile,Mucor pusillus, contain γ linolenic acid. The fatty acids of the thermophilic fungi were more saturated than the corresponding mesophilic species.  相似文献   

10.
Gamma‐linolenic acid (GLA) plays an important role in the prevention and/or treatment of certain diseases. In this work, we investigate the incorporation of GLA from supplemented feed diets with borage oil (BO) and evening primrose oil (EPO) as substitutes for soybean oil (SO) into the composition of tilapia fillet lipids. High contents of PUFA and n‐6 fatty acids were quantified in fish fillet after 30 days of treatment with SO, BO, and EPO. Feed diets containing BO and EPO were efficient in the incorporation of GLA into fish. Compared to the initial day of the experiment, the increase of GLA was significant (from 6.43 to 13.99 and 15.12 mg g?1, in lipids of fish treated for 30 days with BO and EPO, respectively). The increase of GLA was also observed in fish which were fed with SO diet (6.43–11.43 mg g?1). Principal component analysis (PCA) allowed the separation of the treatments and discriminated BO and EPO in a group of fish that received the GLA supplemented diet. In addition to GLA, n‐3 fatty acids were important in the characterization of SO diet and affected the separation of BO and EPO from SO in the PCA score plot.  相似文献   

11.
Various plant seeds have received little attention in fatty acid research. Seeds from 30 species mainly of Boraginaceae and Primulaceae were analysed in order to identify potential new sources of the n‐3 PUFA α‐linolenic acid (ALA) and stearidonic acid (SDA) and of the n‐6 PUFA γ‐linolenic acid (GLA). The fatty acid distribution differed enormously between genera of the same family. Echium species (Boraginaceae) contained the highest amount of total n‐3 PUFA (47.1%), predominantly ALA (36.6%) and SDA (10.5%) combined with high GLA (10.2%). Further species of Boraginaceae rich in both SDA and GLA were Omphalodes linifolia (8.4, 17.2%, resp.), Cerinthe minor (7.5, 9.9%, resp.) and Buglossoides purpureocaerulea (6.1, 16.6%, resp.). Alkanna species belonging to Boraginaceae had comparable amounts of ALA (37.3%) and GLA (11.4%) like Echium but lower SDA contents (3.7%). Different genera of Primulaceae (Dodecatheon and Primula) had varying ALA (14.8, 28.8%, resp.) and GLA portions (4.1, 1.5%, resp.), but similar amounts of SDA (4.9, 4.5%, resp.). Cannabis sativa cultivars (Cannabaceae) were rich in linoleic acid (57.1%), but poor in SDA and GLA (0.8, 2.7%, resp.). In conclusion, several of the presented plant seeds contain considerable amounts of n‐3 PUFA and GLA, which could be relevant for nutritional purposes due to their biological function as precursors for eicosanoid synthesis. Practical applications: N‐3 PUFA are important for human health and nutrition. Unfortunately, due to the increasing world population, overfishing of the seas and generally low amounts of n‐3 PUFA in major oil crops, there is a demand for new sources of n‐3 PUFA. One approach involves searching for potential vegetable sources of n‐3 PUFA; especially those rich in ALA and SDA. The conversion of ALA to SDA in humans is dependent on the rate‐limiting Δ6‐desaturation. Plant‐derived SDA is therefore a promising precursor regarding the endogenous synthesis of n‐3 long‐chain PUFA in humans. The present study shows that, in addition to seed oil of Echium, other species of Boraginaceae (Cerinthe, Omphalodes, Lithospermum, Buglossoides) and Primulaceae (Dodecatheon, Primula), generally high in n‐3 PUFA (30–50%), contain considerable amounts of SDA (5–10%). Therefore, these seed oils could be important for nutrition.  相似文献   

12.
Long‐chain fatty acids (LCFA) are known to activate brown and beige adipocytes. However, very little is known about the effects of the number and the position of double bonds in LCFA with the same length on brown fat‐specific gene expression. To determine the specificity of LCFA in the regulation of these genes in different adipocyte models, fully differentiated 10T1/2, 3T3‐L1, murine, or porcine primary adipocytes (obtained from the subcutaneous fat pad of C57BL/6 mice or Landrace × Yorkshire × Duroc crossbred piglets) were treated with 50 μM of the following 18‐carbon fatty acids: stearic acid (STA; 18:0), oleic acid (OLA; 18:1, Δ9), linoleic acid (LNA; 18:2, Δ9,12), α‐linolenic acid (ALA; 18:3, Δ9,12,15), γ‐linolenic acid (GLA; 18:3, Δ6,9,12), or pinolenic acid (PLA; 18:3, Δ5,9,12) for 24 h with or without 4‐h norepinephrine (NE) treatment. Expression levels of thermoregulatory markers were measured by quantitative real‐time PCR. LNA, ALA, GLA, and PLA upregulated Ucp1 expression and tended to upregulate Pgc1a expression in murine primary adipocytes, but not in 10T1/2, 3T3‐L1, and porcine primary adipocytes. In murine primary adipocytes, NE induced a higher expression of Ucp1 and Pgc1a than non‐NE‐treated cells, and PLA augmented the NE effect. In 10T1/2 cells, NE upregulated Ucp1 and Pgc1a expression, but there was no fatty acid effect. However, 3T3‐L1 cells were insensitive to both fatty acid and beta‐adrenergic agonist stimulation. These results indicate that different adipocyte cell types have different levels of sensitivity to both LCFA and beta agonists in regard to induction of brown fat‐specific gene expression.  相似文献   

13.
Mortierella isabellina and Cunninghamella echinulata were cultivated on glucose‐, pectin‐, starch‐ and lactose‐based media. Culture on glucose at two initial C/N ratios favored lipid synthesis in the media with increased C/N. Starch was an adequate substrate for both molds, but lipid (in g/g of biomass) was produced in lower quantities compared with the glucose trial. Pectin was inadequate for C. echinulata whereas growth of M. isabellina was satisfactory (8.4 g/L), followed by moderate lipid production. Growth of C. echinulata on lactose was negligible, while that of M. isabellina was notable (9.5 g/L) although lipid in biomass was only 0.36 g/g. Hydrolytic enzymes (α‐amylase, polygalacturonase and β‐galactosidase) activities of both strains seemed to be low enough to saturate their metabolic capabilities. This seemed a major cause for the lower amount of lipid accumulated during growth on complex media compared with that on glucose. Cellular fatty acids of M. isabellina were oleic, linoleic and palmitic acid, while γ‐linolenic acid (GLA) was produced in low quantities. In C. echinulata grown on glucose, lactose or starch, GLA concentration was notable at the beginning and end of culture. Growth on pectin at the first growth steps was accompanied by the production of saturated fatty acids, the amount of which decreased thereafter.  相似文献   

14.
Hydra, as sit‐and‐wait predators with limited food selectivity, could serve as model organisms for the analysis of the effect of a particular dietary component on growth and reproduction. We investigated the effect of food quality and of diets enriched with palmitic (PAM) or α‐linolenic acid (ALA) on the life history traits of two hydra species: Hydra oligactis and Hydra vulgaris. We tested the hypothesis that a diet enriched with polyunsaturated fatty acids (PUFA) can stimulate growth and reproduction in simple metazoans with a sit‐and‐wait type of predatory strategy. Our results revealed that a diet based on Artemia nauplii, which are not a natural food for freshwater hydra, stimulated growth, asexual reproduction, and survival in hydra. Artemia nauplii were characterized by the highest lipid content of all used food sources. The analysis of the fatty acid content of hydra indicated the domination the n‐6 fatty acids over n‐3 (eicosapentaenoic acid [EPA], docosahexaenoic acid [DHA], and ALA). Arachidonic acid appeared to be the dominant PUFA in Hydra, irrespective of diet supplementation with palmitic acid or ALA. The dietary supplementation of ALA negatively affected the survival, asexual reproductive rate, and size of clonal offspring of H. oligactis and had no effect on the life history traits of H. vulgaris. Our results also suggest that the hydras are not able to efficiently convert ALA into other essential fatty acids, such as EPA and DHA. To our knowledge, this is the first report about the adverse effects of n‐3 fatty acid supplementation in primitive metazoans such as hydra.  相似文献   

15.
The objective of the experiment with cattle was to produce high quality beef under different feeding conditions and to increase the concentration of essential fatty acids in muscle. In total 10 German Simmental (GS) bulls and 9 German Holstein (GH) steers were kept either on pasture (grass feeding) or in stable (concentrate feeding). Despite biohydrogenation in the rumen, linolenic acid (C18:3n‐3) contained in grass was absorbed and deposited into the lipids of muscle. This led to a significantly (p ≤ 0.05) higher content of n‐3 fatty acids in the muscle lipids of grazing cattle. The relative amount of total n‐3 fatty acids increased from 1.4 g/100 g fatty acid methyl ester (%FAME) in the intensively fed Simmental bulls to 5.5 %FAME in grass fed cattle. The n‐6/n‐3 ratio of pasture grazing GS bulls was 1.3 in contrast to 13.7 of the animals kept in the byre. The total n‐3 fatty acid concentration in beef muscle increased from 24.6 mg (concentrate) to 108.6 mg/100 g wet weight (grazing). In GH steers the total n‐3 fatty acid concentration was significantly (p ≤ 0.05) increased up to 86.3 mg/100 g wet weight in pasture grazing steers compared to 28.8 mg/100 g wet weight in animals fed the concentrate. The relative content (%FAME) of CLAcis‐9, trans‐11 (0.6 vs 0.56 %FAME in GS; 0.55 vs 0.52 %FAME in GH) in muscle was not significantly increased by grazing on pasture in comparison to concentrate feeding neither in GS bulls nor in GH steers, respectively.  相似文献   

16.
Dietary trans monoenes have been associated with an increased risk of heart disease in some studies and this has caused much concern. Trans polyenes are also present in the diet, for example, trans α‐linolenic acid is formed during the deodorisation of α‐linolenic acid‐rich oils such as rapeseed oil. One would expect the intake of trans α‐linolenic acid to be on the increase since the consumption of rapeseed oil in the western diet is increasing. There are no data on trans α‐linolenic acid consumption and its effects. We therefore carried out a comprehensive study to examine whether trans isomers of this polyunsaturated fatty acid increased the risk of coronary heart disease. Since inhibition of Δ6‐desaturase had also been linked to heart disease, the effect of trans α‐linolenic acid on the conversion of [U‐13C]‐labelled linoleic acid to dihomo‐γ‐linolenic and arachidonic acid was studied in 7 healthy men recruited from the staff and students of the University of Edinburgh. Thirty percent of the habitual fat was replaced using a trans ‘free’‐ or ‘high’ trans α‐linolenic acid fat. After at least 6 weeks on the experimental diets, the men received 3‐oleyl, 1,2‐[U‐13C]‐linoleyl glycerol (15 mg twice daily for ten days). The fatty acid composition of plasma phospholipids and the incorporation of 13C‐label into n‐6 fatty acids were determined at day 8, 9 and 10 and after a 6‐week washout period by gas chromatography‐combustion‐isotope ratio mass spectrometry. Trans α‐linolenic acid of plasma phospholipids increased from 0.04 ? 0.01 to 0.17 ? 0.02 and cis ? ‐linolenic acid decreased from 0.42 ? 0.07 to 0.29 ? 0.08 g/100 g of fatty acids on the high trans diet. The composition of the other plasma phospholipid fatty acids did not change. The enrichment of phosphatidyl 13C‐linoleic acid reached a plateau at day 10 and the average of the last 3 days did not differ between the low and high trans period. Both dihomo‐γ‐linolenic and arachidonic acid in phospholipids were enriched in 13C, both in absolute and relative terms (with respect to 13C‐linoleic acid). The enrichment was slightly and significantly higher during the high trans period (P<0.05). Our data suggest that a diet rich in trans α‐linolenic acid (0.6% of energy) does not inhibit the conversion of linoleic acid to dihomo‐γ‐linolenic and arachidonic acid in healthy middle‐aged men consuming a diet rich in linoleic acid.  相似文献   

17.
The fatty acid distribution in the seed flour from 31 Vicia taxa distributed throughout southern Spain was analyzed by gas chromatography. Fatty acids ranged from myristic acid to araquidic acid. Linoleic acid (from 28.7 to 66.3% of the fatty acids), oleic acid (from 7.2 to 32.5% of the fatty acids) and linolenic acid (from 2.7 to 16.6% of the fatty acids) were the most abundant among unsaturated ones and palmitic acid among saturated ones. The total unsaturated to saturated fatty acids ratio ranged between 2.6 in V. hirsuta and 4.2 in V. hybrida. Polyunsaturated to monounsaturated fatty acids ratio ranged between 1.3 in V. ervilia and 9.0 in V. pyrenaica. The ω-6 to ω-3 ratio ranged between 1.7 in V. articulata and 17.3 in V. faba. The fatty acids distribution observed in the Vicia species studied supports the use of these plants as a source of important dietary lipids.  相似文献   

18.
Microalgal oil from Nannochloropsis gaditana cultivated in a laboratory-scale photobioreactor was submitted to enzymatic hydrolysis using Candida rugosa lipase. A 22 full factorial design was performed to evaluate the effects of the soy lecithin emulsifier concentration and the lipase loading on the formation of free fatty acids. As control, a similar set of reactions was carried out with macaw palm oil. The results showed similar hydrolysis yields for both feedstocks. The highest value was reached when the concentrations of soy lecithin and lipase were taken at their lowest and highest levels, respectively. The hydrolysate from microalgal oil showed that the majority of the fatty acids released by C. rugosa consisted of palmitic, oleic, and linoleic acids.  相似文献   

19.
It has been recognized that human hair lipids play crucial roles in the integrity of cells and matrices, while the details of distribution and structure of the minor lipids are hardly known. Here we investigated the lipids at the hair surface, at the interface between cuticle and cortex and in the interior of hair (cortex, medulla and melanin granules). Hair lipids and fatty acids and their metabolites were detected and characterized by using infrared spectroscopy and several mass spectrometry techniques (FTIR, ToF–SIMS, GCMS, and ESI–MS). As a result, it was found that unsaturated fatty acids were present more in the cortex of hair than at the hair surface. At the interface between cuticle and cortex, it is suggested that steryl glycoside‐like lipids containing N‐acetylglucosamine were present, and contributing to the adhesion between the cuticle and cortex of hair. Oxidative metabolites derived from integral fatty acids such as linoleic and alpha‐linolenic acids were found in the hair bulb and melanin granules. Especially the oxidative metabolites of alpha‐linolenic acid were integrated into the lipids non‐covalently and tightly bound to melanin granules (namely, melanin lipids) and suggested as being involved in the biosynthetic processes of melanosome.  相似文献   

20.
Lipids from five cultivars of highbush blueberries (Vaccinium corymbosum L.) were extracted and fractionated into neutral lipids (60–66%), glycolipids (20–22%) and phospholipids (14–18%). The major fatty acids in all fractions were palmitic (16∶0), oleic (18∶1), linoleic (18∶2), and linolenic (18∶3) acids. All lipid classes had a large concentration of C18 polyunsaturated acids (84–92%), indicating that blueberries are a rich source of linoleic and linolenic acids. Changes in the fatty acid composition of neutral lipids and phospholipids were not significantly different among the five cultivars, but significant differences were noted in the ratios of linoleic and linolenic acids in the glycolipids fraction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号