首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Biobased neat epoxy materials containing functionalized vegetable oils (FVO), such as epoxidized linseed oil (ELO) and epoxidized soybean oil (ESO), were processed with an anhydride curing agent. A percentage of diglycidyl ether of bisphenol F (DGEBF) was replaced by ELO or ESO. The selection of the DGEBF, FVO, and an anhydride‐curing agent resulted in an excellent combination to produce a new biobased epoxy material having a high elastic modulus and high glass transition temperature. Izod impact strength and fracture toughness were significantly improved dependent on FVO content, which produced a phase‐separated morphology. POLYM. ENG. SCI., 45:487–495, 2005. © 2005 Society of Plastics Engineers  相似文献   

2.
In this work we have developed polymeric materials from epoxidized vegetable oils in order to obtain materials with excellent mechanical properties for use as green matrix composites. Epoxidized soybean oil (ESO), epoxidized linseed oil (ELO) and different mixtures of the two oils were used to produce the polymers. Phthalic anhydride (17 mol%) and maleic anhydride (83 mol%) which has a eutectic reaction temperature of 48 °C were used as crosslinking agents while benzyl dimethyl amine (BDMA) and ethylene glycol were used as the catalyst and initiator, respectively. The results showed that samples 100ELO and 80ELO20ESO could be used as a matrix in green composites because they demonstrated good mechanical properties.  相似文献   

3.
Interest in polymers from renewable sources, as alternatives to petroleum‐based polymers, remains strong; however, their performance must be acceptable. To improve performance of epoxidized vegetable oils (EVO) in composite matrix applications, five amine curing agents were evaluated and compared with an anhydride agent used previously. Curing agents were tested in matrices for composites containing a petroleum‐based epoxy resin plus 0% or 30% epoxidized oil from canola (ECO) and soybean (ESO). The two amines with the highest glass transition temperature, determined by differential scanning calorimetry, were selected for characterization by dynamic mechanical analysis; bis (p‐aminocyclohexyl) methane (PACM) showed the highest performance. Amine: epoxy ratios 0.6 to 1.6 were then evaluated; ratios of 0.8 and 1.0 showed superior performance. E‐glass fiber reinforced composites with PACM/EVO showed thermal and mechanical performance slightly lower than the composites with 0% EVO and comparable with those of the anhydride curing agent. Therefore, ECO or ESO blended with petroleum‐based epoxy resins cured with PACM are recommended for its application in E‐glass reinforced composites. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

4.
A potentially inexpensive alternative epoxy resin system based on soybean oil has been developed for polymer composite applications. Epoxidized methyl soyate (EMS) and epoxidized allyl soyate (EAS) have been synthesized at the University of Missouri–Rolla. These materials consist of mixtures of epoxidized fatty acid esters. The epoxidized soy‐based resins provide better intermolecular crosslinking and yield materials that are stronger than materials obtained with commercially available epoxidized soybean oil (ESO). The curing behavior and glass transition have been monitored with differential scanning calorimetry. Neat resin test samples have been fabricated from resin systems containing various amounts of EMS, EAS, and ESO. Standardized tests have shown that the addition of EAS enhances the tensile and flexural properties of the base epoxy resin system. Therefore, epoxidized soy ester additives hold great potential for environmentally friendly and lower cost raw materials for the fabrication of epoxy composites for structural applications. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3513–3518, 2004  相似文献   

5.
Summary: Biobased neat epoxy materials containing epoxidized linseed oil (ELO) were processed with an amine curing agent. A defined amount of diglycidyl ether of bisphenol F (DGEBF) was replaced by ELO. The thermophysical properties of the amine‐cured biobased neat epoxy were measured by dynamic mechanical analysis (DMA). The Izod impact strength increased with an increase in the amount of ELO added. The change in the Izod impact strength was correlated with the thermophysical properties measured by DMA.

Relation between the Izod impact strength and loss factor for amine‐ and anhydride‐cured ELO‐containing epoxy resins.  相似文献   


6.
Bio-based epoxy materials were prepared from epoxidized soybean oil (ESO) with an anhydride-curing agent. Variation of anhydride/epoxy ratio (R) was found to have significant effect on the resulting properties of the materials. The properties were studied and compared by dynamic mechanical analysis (DMA), izod impact, scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The glass transition temperature reaches the maximum at stoichiometric ratio related to the cross-link density of the formed networks. These materials are thermally stable but exhibit a rapid decrease as the anhydride/epoxy ratio was increased.  相似文献   

7.
BACKGROUND: Although rosin acid derivatives have received attention in polymer synthesis in recent years, to the best of our knowledge, they have rarely been employed as epoxy curing agents. The objective of the study reported here was to synthesize rosin‐based flexible anhydride‐type curing agents and demonstrate that the flexibility of a cured epoxy resin can be manipulated by selection of rosin‐based anhydride‐type curing agents with appropriate molecular rigidity/flexibility. RESULTS: Maleopimarate‐terminated low molecular weight polycaprolactones (PCLs) were synthesized and studied as anhydride‐type curing agents for epoxy curing. The chemical structures of the products were confirmed using 1H NMR spectroscopy and Fourier transform infrared spectroscopy. Mechanical and thermal properties of the cured epoxy resins were studied. The results indicate that both the epoxy/anhydride equivalent ratio and the molecular weight of PCL diol play important roles in the properties of cured resins. CONCLUSION: Rosin‐based anhydride‐terminated polyesters could be used as bio‐based epoxy curing agents. A broad spectrum of mechanical and thermal properties of the cured epoxy resins can be obtained by varying the molecular length of the polyester segment and the epoxy/curing agent ratio. Copyright © 2009 Society of Chemical Industry  相似文献   

8.
New thermoset with a high bio‐based content was synthesized by curing epoxidized soybean oil (ESO) with a green curing agent maleopimaric acid catalyzed by 2‐ethly‐4‐methylimidazole. Non‐isothermal differential scanning calorimetry and a relatively new integral isoconversional method were used to analyze the curing kinetic behaviors and determine the activation energy (Ea). The two‐parameter ?esták–Berggren autocatalytic model was applied in the mathematical modeling to obtain the reaction orders and the pro‐exponential factor. For anhydride/epoxy group molar ratio equal to 0.7, Ea decreased from 82.70 to 80.17 kJ/mol when increasing the amount of catalyst from 0.5 to 1.5 phr toward ESO. The reaction orders m and n were 0.4148 and 1.109, respectively. The predicted non‐isothermal curing rates of ?esták–Berggren model matched perfectly with the experimental data. © 2016 American Institute of Chemical Engineers AIChE J, 63: 147–153, 2017  相似文献   

9.
Summary: Biobased neat epoxy materials containing epoxidized linseed oil (ELO) were processed with an anhydride curing agent. A defined amount of the diglycidyl ether of bisphenol F (DGEBF) was replaced by ELO. The selection of the DGEBF, ELO, and an anhydride curing agent resulted in an excellent combination, to provide a new biobased epoxy material showing high elastic modulus, high glass transition temperature, and high heat distortion temperature (HDT) with larger amounts of ELO. The Izod impact strength was almost constant while changing the amount of ELO. This is a promising result for future industrial applications in different engineering industries.

The effect of changing ELO concentration of the anhydride‐cured neat epoxy on the storage modulus.  相似文献   


10.
This paper describes the development of a novel thermoset based on epoxidized hemp seed oil. The optimization of the hardener (anhydride) and crosslinking accelerator (2‐ethylimidazol) concentration as well as the curing parameters are discussed in detail. The optimized material exhibits a bio‐based carbon portion of 57.5 wt% and represents an innovative and sustainable substitute for fully petrochemical‐based resins in terms of thermal and mechanical performance characteristics. However, also a major challenge with regard to practical applications of (bio‐based) thermosets with anhydride curing agent thermosets is identified and addressed: the sensitivity to moisture absorption both during curing and in the fully cured state.  相似文献   

11.
Mixtures of bis(2‐ethylhexyl) succinate and epoxidized soybean oil (ESO) have been evaluated as bio‐based plasticizers for poly(vinylchloride). The rate of absorption of the bioplasticizers and their mixtures in the polymer was fast and, unlike that of petroleum‐derived plasticizers, did not vary significantly with molecular weight. These bio‐derived plasticizers and their mixtures were compatible with the polymer even at high loadings. The succinate was the most volatile and efficient plasticizer, but on heat aging of the polymer compositions, it also had the greatest deleterious effects. Diffusion coefficients and apparent activation energies of formulations containing bioplasticizer mixtures were controlled by the more volatile succinate. Mixtures comprising up to 50 wt% of the succinate yielded acceptably high‐tensile properties after thermal aging as well as better plasticization efficiency than the epoxy bioplasticizer. Although the succinate resulted in inferior volume resistivity of the polymer compositions, improvements were obtained with increasing proportions of the epoxidized derivative in plasticizer mixtures. Melt state viscosity‐shear rate curves of compositions containing dioctyl succinate (DOS) were similar to those made with two of the petroleum‐derived plasticizers, but a DOS/ESO mixture yielded extended non‐Newtonian behavior at low‐shear rates. POLYM. ENG. SCI., 55:634–640, 2015. © 2014 Society of Plastics Engineers  相似文献   

12.
合成了三种环氧大豆油低聚物作为室温和高温固化环氧树脂增韧剂,对其增韧环氧体系的粘接性能和力学性能进行了考察。试验结果表明,环氧树脂低聚物对固化体系的初期粘度等性能没有影响,对固化体系粘接性能和力学性能等有较大影响。与未改性的环氧树脂相比,由顺丁烯二酸酐扩链的环氧大豆油低聚物改性的环氧树脂剪切强度提高了56.64%。  相似文献   

13.
A novel bio‐based plasticizer containing flame retardant groups based on soybean oil (SOPE) was synthesized from epoxidized soybean oil (ESO) and diethyl phosphate through a ring‐opening reaction. PVC blends plasticized with ESO and SOPE were prepared, respectively. Properties including rheological behavior, thermal stability, flame retardant performance, mechanical properties of PVC plasticized with ESO and SOPE were carefully studied. The results showed that the plasticized PVC blends indicated better compatibility, thermal, and mechanical properties. As a novel bio‐based plasticizer containing flame retardant groups, the TGA data indicated that the thermal degradation temperature of PVC blends plasticized with SOPE could reach to 275.5°C. LOI tests and SEM indicated that the LOI value of PVC blends could increase from 24.2 to 33.6%, the flame retardant performance of SOPE was put into effect by promoting polymer carbonization and forming a consolidated and thick flame retardant coating quickly, which is effective to prohibit the heat flux and air incursion. The enhancement in flame retardancy will expand the application range of PVC materials plasticized with SOPE. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42111.  相似文献   

14.
Epoxy resin is widely used to make composites, electronic and electric parts, adhesives, and coating materials because it has excellent thermal, electrical, and mechanical properties. Using natural materials in making epoxy composites and nanocomposites would make the final products greener. Therefore, in this study, epoxidized soybean oil (ESO) and cellulose nanocrystals (CNCs) were used to make green epoxy nanocomposites. ESO was prepared by epoxidation of soybean oil with peroxyacetic acid and it was confirmed by Fourier transform infrared spectroscopy. The ESO was mixed with diglycidyl ether of bisphenol A at different weight ratios (10%–50%) and the stoichiometric amount of ethylene diamine was used for curing. CNC content in the nanocomposites was changed from 0.125 to 1 phr. Mechanical properties of the epoxy samples and the nanocomposites were investigated by universal testing machine and izod impact tester. The epoxy sample showed best mechanical properties at ESO 30%. The nanocomposite with CNC 0.25 phr showed best mechanical properties. Fracture surfaces of the epoxy sample and the nanocomposites were investigated by scanning electronic microscope. POLYM. ENG. SCI., 60:439–445, 2020. © 2019 Society of Plastics Engineers  相似文献   

15.
Novel bio‐based coating materials were developed through cationic ring‐opening photopolymerization of dihydroxyl soybean oil (DSO) with commercial epoxy monomers [i.e., epoxidized soybean oil (ESO) and 3,4‐epoxycyclohexylmethyl‐3,4‐epoxycyclohexanecarboxylate (ECHM). The ether cross‐linking and post‐polymerization of the polymeric network were observed using Fourier transform infrared spectroscopy. Thermal properties of the bio‐based coating materials and their copolymerization behaviors were examined using differential scanning calorimetry and a thermogravimetric analyzer. Cross‐link density and molecular weight between cross‐link were obtained from dynamic mechanical analysis. ECHM/DSO (1 : 1.43 weight ratio) films showed the highest elongation at break (49.2%) with a tensile strength of 13.7 MPa. After 2 months of storage, the elongation at break and tensile strength of films were 32% and 15.1 MPa, respectively. ESO/DSO films (w/w ratios of 1 : 0.1, 1 : 0.15, and 1 : 0.2) exhibited stable flexibility of 11–13% of elongation at break without significant reductions in tensile strength (2.5–4.4 MPa) during a 2‐month shelf life. Optical transparencies of the films were comparable to commercial glass and polymers, and water uptake properties (0.72% and 2.83%) were significantly low. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41773.  相似文献   

16.
This study focuses on synthesis of waterborne epoxy (WBE) derived from epoxidized soybean oil (ESO) and its compatibility with water-dispersible curing agent Pripol 1009, which is a bioderived long-chain dimer acid. The reaction parameters involved in the synthesis of WBE from ESO have been optimized based on physicochemical properties like hydroxyl value, epoxy equivalent value and degree of solubility of WBE. The WBE obtained after 5 and 6 h of reaction time was found to be of optimum composition with balanced physicochemical properties. The mechanical, thermal and physicochemical properties of WBE obtained after 6 h of reaction time revealed relatively better performance characteristics as compared to ESO.  相似文献   

17.
In this article, the effects of bio‐oil and epoxidized linseed oil (ELO) on water absorption, tangential swelling, decay and insect resistance, thermo‐gravimetric analysis, and mechanical properties of treated wood samples were studied. The bio‐oil used in this article was by‐product of ThermoWood thermal modification process. Linseed oil and hydrogen peroxide were used to prepare ELO. The results indicated that the samples treated with bio‐oil had lower water absorption than that of the control group. The second treatment with ELO significantly reduced further the water absorption. The decay resistance of treated wood samples with 20% of bio‐oil against brown (Coniophora puteana) and white rot (Trametes versicolor) fungi was very high. According to the insect test results, increasing bio‐oil concentration from 10% to 20% significantly decreased surviving rate of Hylotrupes bajulus. Thermo‐gravimetric analysis showed that all treated samples had higher initial deterioration temperature than that of the control group. Regarding the wood strength, the impregnated bio‐oil generally reduced the mechanical properties of wood except modulus of elasticity (MOE). © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1562–1569, 2013  相似文献   

18.
《Polymer Composites》2017,38(5):884-892
A systematic study was performed to describe the effect of epoxidized soybean oil (ESO) on storage modulus, glass transition temperature (T g) and mechanical properties in epoxy resin composites reinforced by jute fabric. In addition to aromatic diglycidylether of bisphenol‐A (DGEBA) resin, a glycerol (GER)‐and a pentaerythritol (PER)‐based aliphatic resin was applied as base resin, which can be also synthesized from renewable feedstock. Based on strip tensile test results, the usual alkali treatment of jute fabric was avoided. By increasing the ESO‐content in aliphatic composites the T g increases, whereas in case of DGEBA, it decreases. The results indicate that although ESO has a significant softening effect, the jute fiber‐reinforced DGEBA composite can be replaced without significant compromise in mechanical properties by a potentially fully bio‐based composite consisting of 25 mass% ESO‐containing aliphatic PER‐reinforced by jute fibers. POLYM. COMPOS., 38:884–892, 2017. © 2015 Society of Plastics Engineers  相似文献   

19.
The effect of various epoxidized vegetable oils as potential plasticizers for poly(3‐hydroxybutyrate) (PHB) was evaluated in terms of changes in mechanical and thermal properties and morphology. PHB is a biodegradable aliphatic polyester obtained from bacterial fermentation. High stiffness and fragility are two of its main drawbacks. To overcome this behaviour, PHB was plasticized with various amounts of two different epoxidized vegetable oils: epoxidized linseed oil (ELO) and epoxidized soybean oil (ESBO). The total ELO and ESBO content varied in the range 5 phr (per hundred resin) to 20 phr and plasticized PHB materials were obtained by melt extrusion and compounding followed by injection moulding. The results show that the plasticizing effect provided by ELO is more efficient than that by ESBO with balanced properties at a concentration of 10 phr ELO. ELO addition leads to an improvement in mechanical ductile properties with a noticeable increase in elongation at break and impact absorbed energy. With regard to thermal properties, the addition of both ELO and ESBO leads to a marked increase in thermal stability of PHB. All these findings suggest that addition of 10 phr ELO leads to optimized PHB formulations with potential uses in technical applications. © 2016 Society of Chemical Industry  相似文献   

20.
Novel families of flexible, semiflexible and rigid crosslinked polyesters were prepared from modified natural oils such as soybean, rape-seed and linseed oil. Maleinated oils were used as anhydride-functional curing agents of epoxy resins such as bisphenol-A-diglycidylether and epoxidized natural oils. A new class of unsaturated polyester resins was based upon maleic anhydride, epoxidized natural oils and styrene. The resulting thermosetting polyesters were reinforced with natural fibers such as hemp and flax fibers. The influence of molecular architectures, curing conditions and formulations on thermal, mechanical and morphological properties were investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号