首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Industrially produced partially hydrogenated vegetable fat (PHVF) contains trans fatty acids (TFA) mostly comprising elaidic acid (EA, 18:1?9t). Though, the harmful effects of TFA on health have been repeatedly publicized, the fat containing TFA have been continued to be used as a cooking medium in many regions of the world. The adverse effects of PHVF on oxidative stress and inflammatory markers and the possible ameliorative action of rice bran oil (RBO) on these markers were evaluated. Weaning rats were fed a AIN‐93 purified diet supplemented with the following lipids: groundnut oil (GNO, 10 wt%), PHVF (10 wt%), RBO (10 wt%), PHVF blended with RBO at 2.5, 5.0 and 7.5 wt% levels. The final concentration of the lipids in the diet was maintained at 10 wt%. Rats were fed these diets for 60 days. They were sacrificed and analyzed for oxidative stress and inflammatory markers. The rats fed PHVF showed lower levels of lipid peroxidation and hepatic antioxidant enzymes. The rats fed PHVF‐containing diets showed enhanced levels of interleukin‐1β, C‐reactive proteins and also showed enhanced levels of paw inflammation when injected with carrageenan as compared to rats given GNO, RBO or PHVF blended with incremental amounts of RBO. The macrophages from rats fed diet containing PHVF showed up‐regulation in the expressions of cytosolic phospholipase A2 (cPLA2), nuclear factor‐κB p65, toll like receptor (TLR)‐2, TLR‐4 and down‐regulation in the expressions of peroxisome proliferator activated receptor gamma (PPAR)γ, adiponectin receptor (AdipoR)‐1 and AdipoR‐2 when compared to rats fed diet containing GNO, RBO and PHVF blended with RBO. It was concluded that dietary PHVF enhance pro‐inflammatory markers which can be reduced by judiciously blending PHVF with RBO.  相似文献   

2.
The effects of minor components in crude rice bran oil (RBO) including free fatty acids (FFA), rice bran wax (RBW), γ-oryzanol, and long-chain fatty alcohols (LCFA), on alkali refining losses were determined. Refined palm oil (PO), soybean oil (SBO) and sunflower oil (SFO) were used as oil models to which minor component present in RBO were added. Refining losses of all model oils were linearly related to the amount of FFA incorporated. At 6.8% FFA, the refining losses of all the model oils were between 13.16 and 13.42%. When <1.0% of LCFA, RBW and γ-oryzanol were added to the model oils (with 6.8% FFA), the refining losses were approximately the same, however, with higher amounts of LCFA greatly increased refining losses. At 3% LCFA, the refining losses of all the model oils were as high as 69.43–78.75%, whereas the losses of oils containing 3% RBW and γ-oryzanol were 33.46–45.01% and 17.82–20.45%, respectively.  相似文献   

3.
Chopra R  Sambaiah K 《Lipids》2009,44(1):37-46
Lipase-catalyzed interesterification was used to prepare different structured lipids (SL) from rice bran oil (RBO) by replacing some of the fatty acids with α-linolenic acid (ALA) from linseed oil (LSO) and n-3 long chain polyunsaturated fatty acids (PUFA) from cod liver oil (CLO). In one SL, the ALA content was 20% whereas in another the long chain n-3 PUFA content was 10%. Most of the n-3 PUFA were incorporated into the sn-1 and sn-3 positions of triacylglycerol. The influence of SL with RBO rich in ALA and EPA + DHA was studied on various lipid parameters in experimental animals. Rats fed RBO showed a decrease in total serum cholesterol by 10% when compared to groundnut oil (GNO). Similarly structured lipids with CLO and LSO significantly decreased total serum cholesterol by 19 and 22% respectively compared to rice bran oil. The serum TAGs level of rats fed SLs and blended oils were also significantly decreased by 14 and 17% respectively compared to RBO. Feeding of an n-3 PUFA rich diet resulted in the accumulation of long chain n-3 PUFA in various tissues and a reduction in the long chain n-6 PUFA. These studies indicate that the incorporation of ALA and EPA + DHA into RBO can offer health benefits.  相似文献   

4.
High-oryzanol rice brain oil (HORBO), rice bran oil (RBO), and partially hydrogenated soybean oil (PHSBO) were used to prepare french fries. Polar fractions of the three oils were analyzed for nonvolatile components by high-performance size-exclusion chromatography (HPSEC) with ELSD. In all frying experiments, both HORBO and RBO yielded predominantly dimeric and monomeric materials. The concentrations of polymeric species in HORBO and RBO were greater than in PHSBO. The major degradation products from HORBO, RBO, and PHSBO were dimers (8.93 mg/100 mg oil), monomers (10.5 mg/100 mg oil), and DG (22.4 mg/100 mg oil), respectively. Thermal degradation via hydrolysis was much greater in PHSBO than in HORBO or RBO. Distribution data indicated that the extent of polymer formation from frying was in the order RBO>HORBO >PHSBO, consistent with the degree of lipid unsaturation and the oryzanol content in these oils. HPSEC-ELSD results from the two RBO showed that the amounts of various polymeric species, including trimers and higher polymers, were lower in HORBO than in RBO. The percentage of polar materials and the percentage of polymerized TG, which were used as indicators of oil quality and stability, decreased with increasing tocopherol and oryzanol contents in the order PHSBO>HORBO>RBO.  相似文献   

5.
In the present study we report the results obtained on the use of rice bran oil (RBO), a naturally occurring nontoxic oil, and its epoxidized variety (epoxidized RBO, or ERBO) in the compounding and vulcanization of different natural rubber–chloroprene rubber (NR–CR) blends. The processability, cure characteristics, and physical properties of the blends prepared with these oils were compared with those of control mixes prepared with aromatic oil. The optimum cure time and scorch time values of the different blends prepared with these oils were found to be lower than those of the respective control blends prepared with aromatic oil. Evaluation of physical properties of the different experimental blends showed that replacement of aromatic oil with these oils did not adversely affect their physical properties. Because RBO contains a good amount of free fatty acids it was tried as a coactivator in addition to its role as a processing aid. The level of these oils required for the blend preparation was optimized in a Brabender plasticorder. Physical properties such as tensile strength, elongation at break, tear strength, swelling index, and abrasion loss, for example, were evaluated for both experimental and control mixes. Comparison of cure characteristics and physical properties of the blends prepared with aromatic oil and with these oils showed that these oils could be used in place of aromatic oil in the above blends. It is also to be noted that aromatic oil is of petroleum origin and is reported to be carcinogenic. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 4084–4092, 2003  相似文献   

6.
The compositions of rice bran oils (RBO) and three commercial vegetable oils were investigated. For refined groundnut oil, refined sunflower oil, and refined safflower oil, color values were 1.5–2.0 Lovibond units, unsaponifiable matter contents were 0.15–1.40%, tocopherol contents were 30–60 mg%, and FFA levels were 0.05–0.10%, whereas refined RBO samples showed higher values of 7.6–15.5 Lovibond units for color, 2.5–3.2% for unsaponifiable matter, 48–70 mg% for tocopherols content, and 0.14–0.55% for FFA levels. Of the four oils, only RBO contained oryzanol, ranging from 0.14 to 1.39%. Highoryzanol RBO also showed higher FFA values compared with the other vegetable oils studied. The analyses of FA and glyceride compositions showed higher palmitic, oleic, and linoleic acid contents than reported values in some cases and higher partial glycerides content in RBO than the commonly used vegetable oils. Consequently, the TG level was 79.9–92% in RBO whereas it was >95% in the other oils studied. Thus, refined RBO showed higher FFA values, variable oryzanol contents, and higher partial acylglycerol contents than commercial vegetable oils having lower FFA values and higher TG levels. The higher oryzanol levels in RBO may contribute to the higher FFA values in this oil.  相似文献   

7.
The present study investigated the molecular effects of rice bran oil (RBO) on lipid‐regulatory genes (sterol regulatory element binding protein‐1 [Srebf1] and peroxisome proliferator‐activated receptors‐α [Ppara]) and the expression of catalase (CAT) and superoxide dismutase (SOD1) genes in insulin‐resistant rats. Rats were divided into five groups: animals that received standard diet (control); rats fed standard diet containing RBO as the sole source of fat (RBO); a high‐fructose diet (HFD) group, which was further divided into two subgroups: rats fed HFD either for only 1 month (HFD1) or for 2 months (HFD2) and rats fed HFD containing RBO for 1 month; while rats in the last group fed HFD for 30 days then treated with RBO for another 30 days. The HFD induced a state of insulin resistance (IR) as indicated by the hyperinsulinemia and elevated homeostasis model assessment insulin resistance index. Hepatic lipid levels and radical scavenging enzymes were altered by the HFD. Lipid‐regulatory genes, Srebf1 and Ppara, were upregulated while Sod1 and Cat were downregulated in insulin‐resistant rats. Addition of RBO to the two diet regimens alleviated the disorders of IR to some extent. RBO reduced the hepatic levels of triacylglycerol, malondialdehyde, SREBP, and PPAR‐α mRNA. Hepatic SOD and CAT were elevated at gene and protein levels. The HFD induces de novo lipogenesis by upregulating the lipid‐regulatory genes resulting in increased serum and hepatic triacylglycerol. Moreover, IR induced by the HFD caused a state of oxidative stress. Supplementation of RBO to fructose‐fed rats not only improves insulin resistance but also downregulates lipogenic genes and improves the unbalanced oxidative status.  相似文献   

8.
Color is regarded as an important quality parameter for rice bran oil (RBO). Nevertheless, numerous grade‐three and grade‐four RBOs with dark color are currently available in the Chinese market. These oils are usually produced by steam refining and exhibit a mahogany color, which is undesired by customers. Here, we describe the development of a new industrially viable refining method based on multi‐stage molecular distillation (MMD), through which decoloration and fractionation of grade‐four RBO were accomplished, and four kinds of products, pigment oil, semi‐refined oil‐I (SRO‐I), semi‐refined oil‐II (SRO‐II), and semi‐refined oil‐III (SRO‐III), were obtained. The pigment oil was hazy and mahogany colored, containing 84.84 % non‐triacylglycerols, mainly pigments, tocopherols, and free fatty acids. SRO‐I was hazy and orange, containing 20,563 mg/kg of oryzanol (accounting for 77–82 % of raw oil) and was 28.68 % of non‐triacylglycerols. In particular, higher content of monounsaturated triacylglycerols, diunsaturated triacylglycerols and non‐triacylglycerols was responsible for the haze. SRO‐II and SRO‐III had a clear yellow appearance and a non‐triacylglycerol content <1.5 %. These semi‐refined oils were mixed directly after MMD and further refined by mild deacidification and winterization to obtain fully refined oil, which met the requirements of commonly used standards. Notably, the final oil exhibited light color and retained nearly 80 % of the oryzanol of raw oil. The yield of final oil reached 80–85 % through the entire refining process.  相似文献   

9.
Some frying by‐products of medium polarity called medium polarity materials (MPMs) were isolated by reversed‐phase high‐performance liquid chromatography (RP‐HPLC) from three different cooking oils used for frying during the domestic successive deep‐frying of potatoes. The cooking oils investigated were virgin olive oil, sunflower oil and a vegetable shortening oil. The relative RP‐HPLC increments of the MPM fractions showed a significant correlation to the total polar material and to the polymerised triacylglycerol increment. They could be used as a new method for the assessment of fried oil deterioration. The capillary gas chromatography/mass spectrometry analysis revealed two main groups of peaks for the MPM fractions, which are almost identical in the three examined oils. This indicates that the MPM constituents rather result from the triglycerides than from minor constituents of the oils.  相似文献   

10.
Cyclooxygenase (COX)‐2 inhibitors, such as celecoxib, for chronic inflammatory disease are associated with adverse health events, while cis‐9, trans‐11 (c9t11) conjugated linoleic acid (CLA) is anti‐inflammatory without adverse events attributed to pure intake. Mechanistically, celecoxib and c9t11 disrupt the arachidonic acid cascade; however, the equivalency of anti‐inflammatory effects between these compounds is unknown. Therefore, to test the hypothesis that 0.5% dietary c9t11 reduces inflammation equivalently to a celecoxib dose intended to treat rheumatoid arthritis (RA; 5 mg/kg bw), arthritic mice received diets containing one of the following supplements: 1% corn oil (CO, w/w), 0.5% c9t11 (>91% purity) +0.5% CO, or 1% CO + 0.5, 5, or 50 mg/kg bw celecoxib, and were assessed for changes in arthritic severity over 6 weeks. Overall, arthritic severity in mice fed c9t11 was reduced (34%, P < 0.01) while celecoxib doses (0.5, 5, 50 mg/kg) reduced arthritic severity (16, 56, 48%, respectively) compared to CO‐fed arthritic mice. Linear regression of the celecoxib dose‐response showed 0.5% c9t11 (570 mg/kg bw) reduced arthritic severity equivalently to 1.5 mg/kg celecoxib. Interleukin‐6 (IL‐6) was increased in paws of arthritic mice fed CO compared to shams, but was decreased in arthritic groups fed 0.5% c9t11 and 5 mg/kg celecoxib, compared to arthritic mice fed CO (Ps ≤ 0.05). Additionally, paw and plasma IL‐10 levels in arthritic mice were decreased by 5 mg/kg celecoxib, but were unaffected by c9t11 compared to CO. Results suggest dietary c9t11 may be an effective adjunct to COX‐2 inhibition for treating chronic inflammation.  相似文献   

11.
Two conjugated linoleic acid (CLA) isomers, cis‐9, trans‐11 (CLAc9t11) and trans‐10, cis‐12 (CLAt10c12), reduce inflammation in a number of animal models, including collagen‐induced arthritis (CA). However, little is known about the ability of individual CLA isomers to prevent autoimmune disease onset. Evidence that mixed isomer CLA drives T helper cell (Th) 1 responses suggests that CLA, or a specific isomer, exacerbates onset of Th1 autoimmune diseases. In two experiments, we examined if prior dietary exposure to CLAt10c12 (experiment 1) or CLAc9t11 (experiment 2) affected the incidence or severity of CA. DBA/1 mice were fed a semi purified diet with either 6% corn oil (CO, w/w), 5.75% CO plus 0.25% CLAt10c12, or 5.5% CO plus 0.5% CLAc9t11 prior to arthritis development. Arthritis incidence and severity, anti‐collagen antibodies, paw cytokines, and hepatic fatty acids were measured. CLAt10c12 had no effect on arthritis incidence but increased arthritic severity (42%, P = 0.02); however, CLAc9t11 decreased arthritis incidence 39% compared to CO fed mice (P = 0.01), but had no effect on disease severity. CLAt10c12‐induced increase in anti‐collagen type II IgG antibodies may be a mechanism by which this isomer increased arthritic severity, and CLAc9t11‐induced increase in Th2 paw cytokines (IL‐4 and IL‐10, P ≤ 0.04) may explain how CLAc9t11 reduced the arthritis incidence. While both isomers are well known to reduce inflammation in arthritic mice, these new data suggest isomer differences when fed prior to autoimmune disease.  相似文献   

12.
Dietary cis‐9,trans‐11 (c9t11) conjugated linoleic acid (CLA) fed at 0.5 % w/w was previously shown to attenuate inflammation in the murine collagen‐induced (CA) arthritis model, and growing evidence implicates c9t11‐CLA as a major anti‐inflammatory component of dairy fat. To understand c9t11‐CLA's contribution to dairy fat's anti‐inflammatory action, the minimum amount of dietary c9t11‐CLA needed to reduce inflammation must be determined. This study had two objectives: (1) determine the minimum dietary anti‐inflammatory c9t11‐CLA intake level in the CA model, and (2) compare this to anti‐inflammatory effects of dairy fat (non‐enriched, naturally c9t11‐CLA‐enriched, or c9t11‐CLA‐supplemented). Mice received the following dietary fat treatments (w/w) post arthritis onset: corn oil (6 % CO), 0.125, 0.25, 0.375, and 0.5 % c9t11‐CLA, control butter (6 % CB), c9t11‐enriched butter (6 % EB), or c9t11‐CLA‐supplemented butter (6 % SB, containing 0.2 % c9t11‐CLA). Paw arthritic severity and pad swelling were scored and measured, respectively, over an 84‐day study period. All c9t11‐CLA and butter diets decreased the arthritic score (25–51 %, P < 0.01) and paw swelling (8–11 %, P < 0.01). Throughout the study, plasma tumor necrosis factor (TNFα) was elevated in CO‐fed arthritic mice compared to non‐arthritic (NA) mice but was reduced in 0.5 % c9t11‐CLA‐ and EB‐fed mice. Interleukin‐1β and IL‐6 were increased in arthritic CO‐fed mice compared to NA mice but were reduced in 0.5 % c9t11‐CLA‐ and EB‐fed mice through day 42. In conclusion, 0.125 % c9t11‐CLA reduced clinical arthritis as effectively as higher doses, and decreased arthritis in CB‐fed mice suggested that the minimal anti‐inflammatory levels of c9t11‐CLA might be below 0.125 %.  相似文献   

13.
Rice bran oil (RBO) usage in Southeast Asia is increasing. The purpose of this study was to incorporate RBO in margarine as a replacement for common oils such as soybean oil. The physicochemical properties of blends of RBO and fractionated palm stearin (FPS) at eleven different weight ratios (from 0:100 to 100:0) were characterized. Results showed that fat blends with ratios of 10:90, 20:80, and 30:70 RBO:FPS were semisolid at ambient temperature, with solid fat contents and a crystal morphology similar to commercial margarine fats. Blends containing ≤30% RBO were made into margarines and compared against commercial margarine over 8 weeks of storage. The margarine with a 20:80 RBO:FPS fat phase was stable against coalescence and phase separation while demonstrating acceptable spreadability and whippability at ambient temperature. Fat crystals in this blend were in the β′ polymorph at all time points during storage, which is a desired characteristic in margarine. This study showed that RBO may be effectively used for margarine production.  相似文献   

14.
Compared to other vegetable oils, rice bran oil (RBO) has a characteristic dark color which further deepens upon heating or frying of foods in the oil. Darkening of the oil during heating has been studied. The dark color‐causing material in crude, chemically refined and physically refined rice bran oils was separated using a silica gel column for a hexane‐eluted oil fraction and a methanol eluted fraction. The methanol eluted fraction for all the above three types of RBO produced a dark color upon heating, hence the physically refined RBO methanol fraction was investigated further and contained monoglycerides (23.4 %) and diglycerides (67.4 %) of linoleic + linolenic acids in its methanol fraction as analyzed by column chromatography and HPLC which decreased in concentration after heating. The linoleic acid level of 37.7 % in the methanol fraction was reduced significantly to 18 % after heating (52.3 % reduction). The IR and NMR spectra were similar to those of a monoglyceride/diglyceride with NMR spectra indicating a lower amount of olefinic protons for the heated sample. These results showed that the darkening of RBO was due to the oxidation and polymerization of monoglycerides/diglycerides containing linoleic acid/linolenic acid.  相似文献   

15.
In this study, the effect of sesame oil (SEO) and rice bran oil (RBO) on the rancidity of canola oil (CAO) during the process of frying potato pieces at 180 °C was investigated. The SEO and RBO were added to the CAO at levels of 3 and 6%. Frying stability of the oil samples during the frying process was measured on the basis of total polar compounds (TPC) content, conjugated diene value (CDV), acid value (AV), and carbonyl value (CV). In general, frying stability of the CAO significantly (P < 0.05) improved in the presence of the SEO and RBO. The positive effect of the SEO on the stability of the CAO was more than that of the RBO. Increasing the amounts of SEO and RBO from 3 to 6% led to decreases in the TPC and AV, and increases in the CDV and CV of the CAO during the frying process. The best frying performance for the CAO was obtained by use of 3% of both SEO and RBO together (CAO/SEO/RBO, 94:3:3 w/w/w).  相似文献   

16.
Chemical composition of sesame (SEO), rice bran (RBO) and bene hull (BHO) oils was determined. During oven test, peroxide value on day 8 (PV8, meq/kg) and carbonyl value on day 6 (CV6, µmol/g) were considered as measures of resistance to the formation of primary and secondary oxidation products, respectively. The SEO and BHO showed statistically the same PV8 (381.4 and 359.8, respectively) and CV6 (25.2 and 25.8, respectively), and their stabilizing effect was significantly better than that of the RBO (455.5 and 32.7, respectively). The unsaponifiable matters (USM) fraction of the BHO (443.7 and 26.8, respectively) had an antioxidative effect higher than those of the SEO (478.0 and 38.6, respectively) and RBO (482.4 and 37.4, respectively). There was a good correlation (R2 = 0.972) between the PV8 and CV6 throughout oxidation period. On the basis of the oxidative stability index (OSI, h) of Rancimat test, the best carry‐through properties belonged to the SEO (6.92 h), followed by the RBO (6.12 h) and BHO (5.0 h), and also a similar order was observed for the USM fractions (5.89, 5.28 and 4.50 h, respectively). There was no correlation between the results of Rancimat and oven tests, showing that the powerful antioxidative agents under oven test conditions were lack of appropriate carry‐through properties. The highest significant reducing power (mmol/L) belonged to the SEO (258.1), followed by the RBO (218.7) and BHO (152.4), whereas the USM fraction of the SEO indicated the least significant quantity among the USM fractions (89.3 vs. 216.6 and 158.0 for the RBO and BHO, respectively).  相似文献   

17.
The influence of extraction method on yield, physicochemical characteristics and tocopherol content of manketti nut oil extracted by four different methods has been determined. Soxhlet (SE) and supercritical fluid (SFE) extractions yielded 45.3 and 44.8%, respectively, while screw press and mechanical shaking extractions had 39.7 and 27.3%, respectively. SPE and SE extractions gave oils that had lower values of unsaponifiable matter (0.70; 0.74%) indicating lower amounts of minor components such as tocopherols (233.13; 290.68 µg/g oil), a greater extent of lipid peroxidation parameters; peroxide values (6.25; 3.01 mequiv O2/kg), para‐anisidine values (10.22; 9.94), totox value (22.72; 15.96), flavour score (?0.25; 2.11), and high acid values (1.23; 1.03 mg KOH/g oil), respectively, compared to SFE and MSE oils. This was attributed to the high processing temperatures of SPE and SE extractions compared to SFE and MSE oils. Refractive indices (1.485–1.487), iodine values (127.97–129.07, Wijs) and density (0.908–0.914 g/cm3) were not affected by extraction method indicating that the oils generally had the same double bond content. Saponification values (182.98–192.95 mg KOH/g oil) and ester values (181.95–192.11), were not affected by extraction method except for SE oil which had lower values that were speculated to be due to co‐extraction with colour pigments.  相似文献   

18.
In this study, polymerized oils with different viscosity grades were synthesized by the polymerization of soybean oil (SO) in an air plasma environment. The results of the elemental analysis, infrared spectroscopy, and pyrolysis gas chromatography revealed that the carbonyl, organic amine, and nitrogen heterocyclic groups were incorporated into the molecule of the polymerized oil (PAIR9); the GPC chromatogram of this oil revealed that the product consisted of dimers and oligomers with higher molecular weights. The tribological behaviors of the polymerized oils were evaluated using a four-ball friction and wear tester. The maximum non-seizure loads of all the polymerized oils surpassed that of SO, and the P B value of PAIR9 reached 1,186 N. Meanwhile, PAIR9 exhibited much better anti-wear performance when the tested loads were lower than 350 N. The worn surfaces lubricated by SO and PAIR9 were analyzed using the X-ray photoelectron spectra (XPS). The results of the XPS analysis proved that during the frictional process, the polymerized oil could not only promote the adsorption of the oil on the metal surface because of the oxygen-containing species (such as esters and carbonyl groups) with higher polarities but also promote the interactions with the metallic iron to form compact and stable tribochemical films containing organic nitrogen complexes.  相似文献   

19.
One hundred nine oil samples were separated chromatographically to obtain oil fractions with a decreased TAG content but with enhanced levels of the minor components that define oil genuineness and quality. The oils, which included virgin olive oils from different cultivars and regions of Europe and north Africa and refined olive, “lampante” olive, refined olive pomace, hazelnut, rapeseed, high-oleic sunflower, corn, grapeseed, soybean, and sunflower oils, were fractionated on a silica gel column with hexane/diethyl ether as the mobile phase eluent. The method was highly reproducible, and the fraction obtained contained about 15% unmodified TAG and 85% polar compounds, which included polymeric TAG, oxidized TAG, DAG, MAG, and FFA, in addition to other minor polar components of the oils. The presence of these compounds, in an enriched fraction, should provide information about the thermal, oxidative, and hydrolytic alterations of the oils, as well as many compounds of interest in determining oil genuineness. The results indicate that these fractions can provide more information than the original oils for NMR or other spectroscopic studies used in the determination of oil quality.  相似文献   

20.
Association colloids formed by surface active minor components play an important role in the oxidative stability of bulk oils. To imitate the formation of nanostructures in refined oils, multiple surface active minor components including phospholipids, free fatty acids, diacylglycerols and sterols were added to stripped corn oil. The critical micelle concentration (CMC) of the mixed components was determined. The impact of mixed minor components at below and above their CMC on oxidative stability of bulk oil and on antioxidant activity of α-tocopherol and Trolox was investigated. The CMC of the mixed surface active components in bulk oil was 20 µmol/kg oil in the presence of 383 ± 2 ppm of water. 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) played an important role on the formation of association colloids since it was the most important component in forming the association colloids as confirmed by CMC and fluorescence probe studies. The association colloids formed by the mixed components showed prooxidative activity in bulk oil as determined by monitoring the formation of lipid hydroperoxide and hexanal. The activity of α-tocopherol or Trolox was not changed by mixed components association colloids. These results suggest that association colloids both physically and chemically impacted the oxidative stability and activity of antioxidants in bulk oil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号