首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The availability of a reliable methodology for the quantification of fatty acid esters of monochloropropropanediol (MCPD) and glycidol is essential for understanding the mechanism of formation of these process contaminants and for developing effective mitigation strategies. While several analytical methods for the determination of MCPD esters have already been developed and evaluated, only very few procedures are currently available for the analysis of glycidyl esters. This work presents a new indirect method for the simultaneous quantification of fatty acid esters of 2-MCPD, 3-MCPD and glycidol. The method is based on the acid-catalyzed conversion of glycidyl esters into 3-monobromopropanediol (3-MBPD) monoesters which, owing to the structural similarity to MCPD esters, are quantified by using the procedure we previously optimized for the analysis of MCPD esters. The critical step of the method, which is the conversion of glycidyl esters, was optimized by testing different reagent concentrations and varying other condition settings. The novel method showed good repeatability (RSD <2.5 %) and between-day reproducibility (RSD ≤5 %). The limit of detection was 0.04 mg/kg for bound 2-MCPD and 3-MCPD and 0.06 mg/kg for bound glycidol. The trueness of the method was evaluated by the analysis of spiked samples and by interlaboratory comparison.  相似文献   

3.
Discrepancies in the analysis of 3‐chloropropane‐1,2‐diol (3‐MCPD) esters can be explained by the hypothesis that in some refined oils significant amounts of fatty acid esters of glycidol (glycidyl esters) are present in addition to 3‐MCPD esters. Glycidyl esters were separated from triacylglycerols by gel permeation chromatography (GPC) and detected by gas chromatography‐mass spectrometry (GC‐MS). Six samples of palm oil and palm oil‐based fats were analyzed by GPC and GC‐MS. In chromatograms of all samples, significant peaks, retention time and mass spectra in conformity with self‐synthesized glycidyl palmitate and glycidyl oleate were detectable. Quantification of individual glycidyl esters was not possible because of a lack of pure standards. Concentration of ester‐bound glycidol in different samples of fats and oils was estimated using an indirect difference method. Glycidyl esters could be detected only in refined, but not in crude or native, fats and oils. The highest concentrations were detected in palm oil and palm oil‐based fats. In a palm oil sample, glycidyl ester concentration varied according to different deodorization parameters, temperature, and time, while 3‐MCPD ester concentration was relatively constant, indicating that mitigation of glycidyl esters possibly may be achieved by optimizing refining parameters.  相似文献   

4.
A method for the determination of total 3‐chloropropane‐1,2‐diol (3‐MCPD) in edible fats and oils was presented. 3‐MCPD was released from 3‐MCPD fatty acid esters by transesterification with NaOCH3/methanol. After derivatization with phenylboronic acid, 3‐MCPD was determined by GC‐MS. Deuterium‐labeled 3‐MCPD was used as internal standard. In a model experiment, it was shown that acidic hydrolysis with methanol/sulfuric acid, which is normally used for the release of 3‐MCPD from its esters, can cause problems because under acidic conditions additional 3‐MCPD can be formed. No additional 3‐MCPD was formed using NaOCH3/methanol for transesterification. Eleven samples of cold‐pressed and refined safflower oils were analyzed with this method. Levels of total 3‐MCPD were in the range from <100 up to 3200 µg/kg.  相似文献   

5.
To find new ways for reducing the potential of palm oil to form 3‐monochloropropane‐1,2‐diol (3‐MCPD) and glycidyl esters during refining it is helpful to know more about the influence of different precursors like diacylglycerols (DAGs) and monoacylglycerols (MAGs), lecithin, and chlorine containing compounds. After adding increasing amounts of the different precursors to a model oil obtained by removal of polar compounds from crude palm oil and heating the mixture under standardized conditions to 240°C for 2 h the contents of 3‐MCPD and glycidyl esters were analyzed according to the standard procedure of DGF C‐VI 18 (10). DAGs and MAGs were found to increase the potential of palm oil to form 3‐MCPD and glycidyl esters, but refined lecithin showed no influence. Sodium chloride as well as tetra‐n‐butylammoniumchloride (TBAC) led to higher contents of the esters. Whereas the addition of TBAC raised the amount of glycidyl esters as well as 3‐MCPD esters, sodium chloride largely raised the amount of 3‐MCPD esters. An addition of 5 mmol of sodium carbonate/kg model oil spiked with sodium chloride reduced the amount of glycidyl esters almost completely; the 3‐MCPD esters were reduced by 50%. About 1 mmol sodium hydrogen carbonate/kg oil reduced both 3‐MCPD and glycidyl esters almost completely. Practical applications : For the mitigation of the formation of 3‐MCPD esters and related compounds in refined edible oils, it is helpful to know more about the effect of different possible precursors. Using a broader data basis, it is possible to adopt the oil processing but especially the choice of the raw material to the demands of the market for lower contents of the esters in the refined products.  相似文献   

6.
On international scale the Codex Alimentarius Standard for Named Vegetable Oils differentiates between virgin oils and cold‐pressed oils, while in Germany virgin, non‐refined and refined oils are available. Here cold‐pressed is an additional quality feature. The paper explains and comments the various definitions for vegetable oils other than olive oil obtained by mechanical extraction only, because they are partly contradictory. Resulting from gentle processing virgin oils are often appreciated by the consumers as the better oils. The answer of the present paper to the question which type of oil is better is that there is no better or worse oil, but only a better or worse suitability of an oil for application in food processing or the kitchen. Finally, the paper picks up the upcoming debate on the potential ’?new' contaminant, 3‐MCPD‐fatty acid esters, which were found in refined oils.  相似文献   

7.
8.
采用沉淀法制备了镍/氧化铝催化剂前驱体,前驱体经焙烧、还原、包油成型制得镍/氧化铝油脂加氢催化剂。通过对催化剂进行TPR、氮吸附测定以及棕榈油加氢评价实验,考察了还原条件(还原温度、还原时间和氢气流速等)对催化剂孔结构和加氢活性的影响。结果表明,还原温度对催化剂孔结构和加氢活性影响最明显;催化剂前驱体最适宜的还原条件为还原温度500 ℃、还原时间3.0 h、氢气流速150 mL/min。在此条件下制备的催化剂用于棕榈油加氢反应,能够使每100 g棕榈油碘值由56.0 g降到0.81 g。  相似文献   

9.
The discovery of fatty acid esters of 3‐chloropropane‐1,2‐diol (3‐MCPD) in edible oil products initiated food monitoring campaigns in many EU Member States. As the determination of 3‐MCPD esters was new to most laboratories, questions on the reliability of the produced analysis data were raised. In response to this, the Institute for Reference Materials and Measurements (IRMM) of the European Commission's Joint Research Centre (JRC) organised a proficiency test on the determination of 3‐chloropropane‐1,2‐diol esters (3‐MCPD esters) in edible oils. The aim of this proficiency test was to scrutinise the capabilities of official food control laboratories, private food control laboratories as well as laboratories from food industry to determine the 3‐MCPD esters content of edible oils. The study was carried out in accordance with “The International Harmonised Protocol for the Proficiency Testing of Analytical Chemistry Laboratories” and ISO Guide 43. The test materials dispatched to the participants were: refined palm oil, extra virgin olive oil spiked with 3‐chloropropane‐1,2‐dioleate and 3‐MCPD standard solution in sodium chloride. Altogether 41 laboratories from 11 EU Member States, Switzerland and Macedonia subscribed for participation in the study. The analysis task was to determine the 3‐MCPD esters content as total 3‐MCPD content of the test samples. Participants were free to choose their analysis methods. In total, 34 laboratories reported results to the organisers of the study. The performance of laboratories in the determination of 3‐MCPD esters in edible oils was expressed by z‐scores. About 56% of the participants performed satisfactorily in the determination of 3‐MCPD esters in palm oil and 85% for the spiked extra virgin olive oil test sample. The study revealed that the direct transesterification of the sample without the prior removal of glycidol esters might lead to strong positive bias.  相似文献   

10.
11.
油脂加氢催化剂是以金属镍为活性组分、氧化铝为载体制备的Ni/Al2O3催化剂。在制备催化剂过程中,其合成条件直接影响着催化剂的最终活性。以工业硝酸镍、碳酸钠和自制氧化铝粉为原料,利用共沉淀的方法制备加氢催化剂,考察了反应温度、反应时间、反应液pH及反应过程中搅拌转速对催化剂活性的影响。通过实验数据汇总分析,最终确定制备Ni/Al2O3油脂加氢催化剂的最佳条件:反应温度为85 ℃、反应结束时溶液pH=8.0、反应时间为1.5 h、搅拌转速为600 r/min。在此条件下制备的Ni/Al2O3催化剂,经棕榈油加氢评价后测定的碘值最低。  相似文献   

12.
The synthetically useful chiral synthons, (R)- and (S)-2-cyclohepten-1-ol, can be prepared by an enantioselective transesterification of racemic trans-2-(phenylseleno) cycloheptanol using lipases, followed by selenoxide elimination and hydrolysis.  相似文献   

13.
14.
The aim of this study was to selectively enrich t10,c12-conjugated linoleic acid (t10,c12-CLA) and c9,t11-CLA in commercial CLA mixtures using a combination of urea crystallization and lipase-catalyzed esterification. The objective of the urea fractionation is to remove saturated and monounsaturated fatty acids (FA) from the CLA mixtures. CLA-enriched free FA (FFA) mixtures containing 53.8 wt% t10,c12-CLA and 39.1 wt% c9,t11-CLA were produced from the CLA mixtures containing ~34 wt% each of the two CLA isomers by a urea crystallization using methanol and the urea-to-FA weight ratio of 2.5:1. The CLA-enriched FFA mixtures were partially esterified with dodecan-1-ol in a recirculating packed-bed reactor using an immobilized lipase from Candida rugosa to further enrich the t10,c12-CLA and c9,t11-CLA in an FFA fraction and an FA dodecyl ester fraction, respectively, under the optimal conditions, i.e., temperature, 20 °C; FA-to-dodecan-1-ol molar ratio, 1:1; water content, 2 wt% of total substrates; residence time, 5 min; and reaction time, 24 h (for t10,c12-CLA enrichment) and 12 h (for c9,t11-CLA enrichment). After the reaction, an FFA fraction with 72.6 wt% t10,c12-CLA was obtained. Another FFA fraction with 62.0 wt% c9,t11-CLA was recovered after the saponification of the FA dodecyl ester fraction. The yields of t10,c12-CLA and c9,t11-CLA in the FFA fractions were 43.6 and 21.5 wt%, respectively, based on their initial weights in the CLA mixtures.  相似文献   

15.
17 monodentate phosphepine ligands with a 4,5‐dihydro‐3H‐dinaphtho[2,1‐c;1′,2′‐e]phosphepine structural motif have been synthesized and tested in the asymmetric hydrogenation of various β‐keto esters. By variation of the substituents of the aryl group on the phosphorus atom a fine tuning of the selectivity of the catalytic system is possible. Quantitative yield and enantioselectivities up to 95% ee have been achieved for the hydrogenation of methyl acetoacetate ( 7a ), methyl 3‐oxovalerate ( 7b ) and ethyl 4‐phenyl‐3‐oxo‐propionate ( 7d ) using 4‐(4‐methoxyphenyl)‐4,5‐dihydro‐3H‐dinaphtho‐[2,1‐c;1′,2′‐e]phosphepine ( 4g ) as ligand. Best enantioselectivities were obtained at comparably high temperatures (100–120 °C), which had the advantage of increased reaction rates.  相似文献   

16.
Marine oils are commonly added to conventional foods and dietary supplements to enhance their contents of omega-3 polyunsaturated fatty acids (PUFA), including eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), which have been associated with numerous potential health benefits. This study compared American Oil Chemists’ Society (AOCS) Official Methods Ce 2b-11 and Ce 2c-11 for determining EPA and DHA in foods and dietary supplements and found that AOCS Ce 2c-11 produces significantly higher analyzed values, which could be attributed to a more comprehensive breakdown of the sample matrix and derivatization of fatty acids. Our subsequent food matrix extension validation of AOCS Ce 2c-11 demonstrated that the method produces true, accurate, sensitive, and precise determinations of EPA, DHA, and total omega-3 PUFA in foods and dietary supplements containing added marine oil, including those formulated with emulsified and microencapsulated oils. The method detection limits for EPA and DHA were 0.012 ± 0.002 and 0.011 ± 0.003 mg g−1, respectively (means ± SD). The analyzed contents of EPA (1.26–386 mg serving−1), DHA (1.37–563 mg serving−1), and total omega-3 PUFA (2.69–1270 mg serving−1) were reported for 27 conventional food and dietary supplement products. Eighteen products declared contents of DHA, EPA + DHA, or total omega-3 PUFA on product labels, and the analyzed contents of those fatty acids varied from 95 to 162% of label declarations for all but two of the products.  相似文献   

17.
Racemic cis‐10‐azatetracyclo[7.2.0.12,6.14,8]tridecan‐11‐one was prepared from homoadamant‐4‐ene by chlorosulfonyl isocyanate addition. The transformation of the β‐lactam to the corresponding β‐amino ester followed by Candida antarctica lipase A‐catalyzed enantioselective (E>>200) N‐acylation with 2,2,2‐trifluoroethyl butanoate afforded methyl (1R,4R,5S,8S)‐5‐aminotricyclo[4.3.1.13,8]undecane‐4‐carboxylate and the (1S,4S,5R,8R)‐butanamide with>99% ee at 50% conversion. Alternatively, transformation of the β‐lactam to the corresponding N‐hydroxymethyl‐β‐lactam and the following Pseudomonas cepacia (currently Burkholderia cepacia) lipase‐catalyzed enantioseletive O‐acylation provided the (1S,4S,6R,9R)‐alcohol (ee=87%) and the corresponding (1R,4R,6S,9S)‐butanoate (ee>99%). In the latter method, competition for the enzyme between the (1R,4R,6S,9S)‐butanoate, 2,2,2‐trifluoroethyl butanoate and the hydrolysis product, butanoic acid, tended to stop the reaction at about 45% conversion and finally gave racemization in the (1S,4S,6R,9R)‐alcohol with time.  相似文献   

18.
Enzymatic reduction of α-(alkoxycarbonylamino)acetophenones with baker's yeast afforded optically active (R)-2-(alkoxycarbonylamino)-1-arylethanols. However, the reduction of α-(benzyloxycarbonylamino)-4-methoxyacetophenone ( 3c ) with immobilized baker's yeast gave (S)-2-(benzyloxycarbonylamino)-1-(4-methoxyphenyl) ethanol. The lipase PS-catalysed transesterification of 2-(allyloxycarbonylamino)-1-arylethanols ( 5 ) using vinyl acetate as an acyl donor resulted in the formation of (S)-2-(allyloxycarbonyl-amino)-1-arylethyl acetates [( S )- 9 ] and (R)-2-(allyloxycarbonylamino)-1-aryle-thanols [( R )- 5 ].  相似文献   

19.
Radical-scavenging antioxidants play crucial roles in the protection of unsaturated oils against autoxidation and, especially, edible oils rich in omega-3 because of their high sensitivity to oxygen. Two complementary tools are employed to select, among a large set of natural and synthetic phenols, the most promising antioxidants. On the one hand, density functional theory (DFT) calculations provide bond dissociation enthalpies (BDEs) of 70 natural (i.e., tocopherols, hydroxybenzoic and cinnamic acids, flavonoids, stilbenes, lignans, and coumarins) and synthetic (i.e., 2,6-di-tert-butyl-4-methylphenol (BHT), 3-tert-butyl-4-hydroxyanisol (BHA), and tert-butylhydroquinone (TBHQ)) phenols. These BDEs are discussed on the basis of structure–activity relationships with regard to their potential antioxidant activities. On the other hand, the kinetic rate constants and number of hydrogen atoms released per phenol molecule are measured by monitoring the reaction of phenols with 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical. The comparison of the results obtained with these two complementary methods allows highlighting the most promising antioxidants. Finally, the antioxidant effectiveness of the best candidates is assessed by following the absorption of oxygen by methyl esters of linseed oil containing 0.5 mmol L−1 of antioxidant and warmed at 90 °C under oxygen atmosphere. Under these conditions, some natural phenols namely epigallocatechin gallate, myricetin, rosmarinic and carnosic acids were found to be more effective antioxidants than α-tocopherol.  相似文献   

20.
研究了2,3-二甲基-2,3-苯基丁烷(DMDPB)、三氧化二锑(Sb2O3)和十溴二苯醚(DBDPO)的加入对低密度聚乙烯(LDPE)的拉伸和阻燃性能的影响探讨了DBDPO与Sb2O3加入量的不同给LDPE的拉伸强度、断裂伸长率和阻燃性能带来的差异。同时研究表明少量的DMDPB加入LDPE/Sb2O3/DBDPO体系,即可显著提高断裂伸长率和阻燃性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号