首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Xinchi Wu  Juan Xu 《Lipids》2016,51(11):1249-1257
Hispidulin is a naturally occurring flavonoid isolated from a traditional Chinese medicinal herb, Saussurea involucrata. In this study, the regulating role of hispidulin on the mRNA expression level of enzymes involved in lipid metabolism was examined in vitro and in vivo. Moreover, the in vivo lipid‐modulating effect of hispidulin was compared with that of fenofibrate, a classical PPARα agonist. Our results in present study demonstrated that hispidulin can directly bind to and activate PPARα as an agonist and thus modulate the downstream lipid‐metabolizing genes. Moreover, hispidulin could attenuate dyslipidemia in high fat diet induced dyslipidemia rat model. Although further studies are needed, this study provided evidence for the potential use of hispidulin in dyslipidemia management.  相似文献   

2.
The alarming rise of antimicrobial resistance (AMR) imposes severe burdens on healthcare systems and the economy worldwide, urgently calling for the development of new antibiotics. Antimicrobial peptides could be ideal templates for next-generation antibiotics, due to their low propensity to cause resistance. An especially promising branch of antimicrobial peptides target lipid II, the precursor of the bacterial peptidoglycan network. To develop these peptides into clinically applicable compounds, detailed information on their pharmacologically relevant modes of action is of critical importance. Here we review the binding modes of a selection of peptides that target lipid II and highlight shortcomings in our molecular understanding that, at least partly, relate to the widespread use of artificial membrane mimics for structural studies of membrane-active antibiotics. In particular, with the example of the antimicrobial peptide nisin, we showcase how the native cellular membrane environment can be critical for understanding of the physiologically relevant binding mode.  相似文献   

3.
The metabolic state of pregnant women and their unborn children changes throughout pregnancy and adapts to the specific needs of each gestational week. These adaptions are accomplished by the actions of enzymes, which regulate the occurrence of their endogenous substrates and products in all three compartments: mother, placenta and the unborn. These enzymes determine bioactive lipid signaling, supply, and storage through the generation or degradation of lipids and fatty acids, respectively. This review focuses on the role of lipid-metabolizing serine hydrolases during normal pregnancy and in pregnancy-associated pathologies, such as preeclampsia, gestational diabetes mellitus, or preterm birth. The biochemical properties of each class of lipid hydrolases are presented, with special emphasis on their role in placental function or dysfunction. While, during a normal pregnancy, an appropriate tonus of bioactive lipids prevails, dysregulation and aberrant signaling occur in diseased states. A better understanding of the dynamics of serine hydrolases across gestation and their involvement in placental lipid homeostasis under physiological and pathophysiological conditions will help to identify new targets for placental function in the future.  相似文献   

4.
The prevalence of life-threatening, drug-resistant microbial infections has challenged researchers to consider alternatives to currently available antibiotics. Teixobactin is a recently discovered “resistance-proof” antimicrobial peptide that targets the bacterial cell wall precursor lipid II. In doing so, teixobactin exhibits potent antimicrobial activity against a wide range of Gram-positive organisms. Herein we demonstrate that teixobactin and several structural analogues are capable of binding lipid II from both Gram-positive and Gram-negative bacteria. Furthermore, we show that when combined with known outer membrane-disrupting peptides, teixobactin is active against Gram-negative organisms.  相似文献   

5.
γ-Tocotrienol (γ-T3), a member of the vitamin E family, has been reported to possess an anticancer activity. γ-T3 is a lipophilic compound with low oral bioavailability. Previous studies showed that γ-T3 has low intestinal permeability. Thus, we have hypothesized that enhancing γ-T3 intestinal permeability will increase its oral bioavailability. Solid lipid nanoparticles (SLN) were tested as a model formulation to enhance γ-T3 permeability and bioavailability. γ-T3 intestinal permeability was compared using in situ rat intestinal perfusion, followed by in vivo relative oral bioavailability studies. In addition, in vitro cellular uptake of γ-T3 from SLN was compared to mixed micelles (MM) in a time and concentration-dependent studies. To elucidate the uptake mechanism(s) of γ-T3 from SLN and MM the contribution of NPC1L1 carrier-mediated uptake, endocytosis and passive permeability were investigated. In situ studies demonstrated SLN has tenfold higher permeability than MM. Subsequent in vivo studies showed γ-T3 relative oral bioavailability from SLN is threefold higher. Consistent with in situ results, in vitro concentration dependent studies revealed γ-T3 uptake from SLN was twofold higher than MM. In vitro mechanistic characterization showed that while endocytosis contributes to γ-T3 uptake from both formulations, the reduced contribution of NPC1L1 to the transport of γ-T3, and passive diffusion enhancement of γ-T3 are primary explanations for its enhanced uptake from SLN. In conclusion, SLN successfully enhanced γ-T3 oral bioavailability subsequent to enhanced passive permeability.  相似文献   

6.
The aim of this study was to examine the oxidation of selected plant oils in concentrated beverage emulsions colored with natural β-carotene. Carotenoid preparations obtained from carrots were dissolved in cold-pressed linseed oil, refined canola oil, and refined palm olein. Oxidative stability of the lipids was examined with and without addition of the pigment to the oil/water (O/W) emulsion. Carotenoid/lipid hydro peroxide (LOOH) concentration was evaluated using two different methods: LOOH + Fe2+ reaction connected with a colored complex of ammonium thiocyanate determined with the help of a spectrophotometer, and LOOH determined with the help of a chemiluminometer. It was shown that oxidation rate of lipids in the O/W emulsions strongly depended on chemical composition of the lipid fraction (type of oil used). Presence of the carotenoid pigment increased the rate. Therefore, if a carotenoid-containing emulsion is to be stable, it should be based on oils of a high oxidative stability.  相似文献   

7.
When oxygen is passed through a linoleic acid (LA) emulsion containing copper(II), primary (hydroperoxides) and secondary oxidation products (aldehydes and ketones) are formed, monitored by ferric thiocyanate (Fe(III)‐SCN) and thiobarbituric acid reactive substances (TBARS) colorimetry, respectively. As total antioxidant capacity (TAC) against lipid peroxidation was not quantified before, both methods were adapted to an ‘area under curve (AUC)’ approach. LA peroxidation followed pseudo‐first order kinetics in aerated emulsions. Absorbance changes as a function of incubation time exhibited sigmoidal curves, enabling the calculation of ‘area under curve’ (AUC) and net AUC = AUCblank?AUCsample, standard calibration curve as net AUC versus concentration, and trolox‐equivalent antioxidant capacity of the tested compounds. Garlic extract showed an antioxidative effect on hydroperoxide formation, but a prooxidative effect on TBARS. Although inhibition of lipid peroxidation was described qualitatively before, it was not evaluated quantitatively, e.g., the trolox‐equivalent antioxidant capacities (TEAC values) of antioxidants with respect to their inhibitive effect against lipid peroxidation were not calculated and compared. Additionally, real‐time monitoring of lipid oxidation products requires highly sophisticated but costly instrumental techniques, but no single oxidation product is a direct measure of lipid oxidation or its antioxidative prevention. The AUC approach is the first quantitative method measuring antioxidant protection against lipid oxidation, with a slightly different order of antioxidative effectiveness from reductive assays because of interfacial effects.  相似文献   

8.
The well-documented link between α-synuclein and the pathology of common human neurodegenerative diseases has increased attention to the synuclein protein family. The involvement of α-synuclein in lipid metabolism in both normal and diseased nervous system has been shown by many research groups. However, the possible involvement of γ-synuclein, a closely-related member of the synuclein family, in these processes has hardly been addressed. In this study, the effect of γ-synuclein deficiency on the lipid composition and fatty acid patterns of individual lipids from two brain regions has been studied using a mouse model. The level of phosphatidylserine (PtdSer) was increased in the midbrain whereas no changes in the relative proportions of membrane polar lipids were observed in the cortex of γ-synuclein-deficient compared to wild-type (WT) mice. In addition, higher levels of docosahexaenoic acid were found in PtdSer and phosphatidylethanolamine (PtdEtn) from the cerebral cortex of γ-synuclein null mutant mice. These findings show that γ-synuclein deficiency leads to alterations in the lipid profile in brain tissues and suggest that this protein, like α-synuclein, might affect neuronal function via modulation of lipid metabolism.  相似文献   

9.
Extraction of lipids from biological samples is a critical step in lipidomics, especially for shotgun lipidomics where lipid extracts are directly infused into a mass spectrometer. The butanol–methanol (BUME) extraction method was originally developed to extract lipids from plasma samples with 1 % acetic acid. Considering some lipids are sensitive to acidic environments, we modified this protocol by replacing acetic acid with lithium chloride solution and extended the modified extraction to tissue samples. Although no significant reduction of plasmalogen levels in the acidic BUME extracts of rat heart samples was found, the modified method was established to extract various tissue samples, including rat liver, heart, and plasma. Essentially identical profiles of the majority of lipid classes were obtained from the extracts of the modified BUME and traditional Bligh–Dyer methods. However, it was found that neither the original, nor the modified BUME method was suitable for 4‐hydroxyalkenal species measurement in biological samples.  相似文献   

10.
The aim of this study was to compare three different collection methods; purge and trap, solid phase micro extraction and automated dynamic headspace/thermal desorption, all followed by GC–MS analysis used for the measurements of concentrations of volatile oxidation products in three different food matrices, namely oil, emulsion and milk. The linearity ranges of calibration curves obtained by the three different methods were compared for oil samples. Overall, the results showed that the three collection methods were comparable, although there were large differences in the linearity range of the calibration curves depending on the collection method. However, some challenges were observed for solid phase micro extraction and automated dynamic headspace/thermal desorption, namely, competition problems and overestimation of concentration by calibration curves, respectively. Based on the results, we suggest mainly to apply solid phase micro extraction on simple matrices and to be cautious with more complex matrices such as enriched milk and highly oxidized oils. Thereby, the study confirmed some challenges observed by other authors regarding competition problems on the fiber when using solid phase micro extraction. Furthermore, we observed that purge and trap, and automated dynamic headspace/thermal desorption were excellent for extraction of volatile compounds in all three matrices. However, automated dynamic headspace/thermal desorption calibration curves did provide an overestimation for oil samples so results must be interpreted with caution.  相似文献   

11.
We have previously shown that the Andalusian-cultivated Asparagus officinalis L. “triguero” variety produces hypocholesterolemic and hepatoprotective effects on rats. This asparagus is a rich source of phytochemicals although we hypothesized there would be some of them more involved in these functional properties. Thus, we aimed to study the effects of asparagus (500 mg/kg body weight (bw)/day) and their partially purified fractions in flavonoids (50 mg/kg bw/day), saponins (5 mg/kg bw/day) and dietary fiber (500 mg/kg bw/day) on oxidative status and on lipid profile in rats fed a cholesterol-rich diet. After 5 weeks treatment, plasma lipid values, hepatic enzyme activities and liver malondialdehyde (MDA) concentrations were measured. With the exception of the saponin fraction (SF), the administration of lyophilized asparagus (LA), fiber fraction (FF), and flavonoid fraction (FVF) to hypercholesterolemic rats produced a significant hypolipidemic effect compare to a high-cholesterol diet (HCD). In addition, the LA and FVF groups exhibited a significant increase in enzyme activity from multiple hepatic antioxidant systems including: superoxide dismutase, catalase, and gluthatione reductase/peroxidase as well as a decrease in MDA concentrations compared to HCD group. These results demonstrate that “triguero” asparagus possesses bioactive constituents, especially dietary fiber and flavonoids, that improve the plasma lipid profile and prevent hepatic oxidative damage under conditions of hypercholesterolemia.  相似文献   

12.
The effects of dietary Cinnamomum camphora seed kernel oil (CCSKO) containing medium‐chain triacylglycerols on lipid metabolism and mRNA and protein expression of β‐3 adrenergic receptor in adipose tissue were studied in diet‐induced obese rats. High fat food‐induced obese rats were randomly divided into CCSKO group, Lard group, Soybean oil (SOY) group and naturally restoring group (n = 10). Rats fed with low fat food were used as a normal control group. Significant decreases in body mass and abdominal fat mass/body mass after 12 weeks were found in CCSKO group as compared with Lard and SOY groups (p < 0.05). Levels of blood total cholesterol (TC), triglyceride, free fatty acid, fasting insulin and insulin resistance in the CCSKO group were decreased significantly, and noradrenaline level and insulin sensitivity index in the CCSKO group were significantly higher than other groups. Meanwhile liver TC and triglyceride levels in the CCSKO group were also decreased markedly. Expression levels of β3‐adrenergic receptor mRNA and protein were higher in CCSKO group than in Lard and SOY groups. These results suggest that CCSKO may contribute to reduction of the body fat mass, promote lipid metabolism and up‐regulate β3‐adrenergic receptor expression in high fat diet‐induced obese rats.  相似文献   

13.
14.
The progress of lipid oxidation in fishery products is complex, as it involves a whole lot of reactions that deter product quality. On the other hand, the use of modified atmosphere packaging (MAP) has, over the years, been effective in improving food product safety and nutritional quality. In addition, as an oxygen‐free and protective food packaging technique, MAP has been shown to effectively minimize overall lipid damage. In this article we discuss how cold to freezing/sub zero‐temperatures could be promising for reducing the development of lipid oxidation in fishery products.  相似文献   

15.
Our objective was to investigate the combination of rosiglitazone (ROSI) and conjugated linoleic acid (CLA) on mammary and hepatic lipogenesis in lactating C57Bl/6 J mice. Twenty-four lactating mice were randomly assigned to one of four treatments applied from postpartum day 6 to day 10. Treatments included: (1) control diet, (2) control plus 1.5 % dietary CLA (CLA) substituted for soybean oil, (3) control plus daily intra-peritoneal (IP) rosiglitazone injections (10 mg/kg body weight) (ROSI), and (4) CLA plus ROSI (CLA-ROSI). Dam food intake and milk fat concentration were depressed with CLA. However, no effects were observed with ROSI. The CLA-induced milk fat depression was due to reduced expression for mammary lipogenic genes involved in de-novo fatty acid (FA) synthesis, FA uptake and desaturation, and triacyglycerol synthesis. Liver weight (g/100 g body weight) was increased by CLA due to an increase in lipid accumulation triggering a compensatory reduction in mRNA abundance of hepatic lipogenic enzymes, including acetyl-CoA carboxylase I and stearoyl-CoA desaturase I. On the contrary, no effects were observed with ROSI on hepatic and mammary lipogenic gene and enzyme expression. Overall, feeding CLA to lactating mice induced milk fat depression and increased hepatic lipid accumulation, probably due to the presence of trans-10, cis-12 CLA isomer, while ROSI failed to significantly attenuate both hepatic steatosis and reduction in milk fat content.  相似文献   

16.
Shumin Qin  Jinjin Yin  Keer Huang 《Lipids》2016,51(7):797-805
Excessive fat accumulation and increased oxidative stress contribute to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). However, the mechanisms underlying the development of steatosis are not entirely understood. The present study was undertaken to establish an experimental model of hepatocellular steatosis with a fat overaccumulation profile in which the effects of oxidative stress could be studied in L‐02 cells. We investigated the effects of free fatty acids (FFA) (palmitate:oleate, 1:2) on lipid accumulation and oxidative stress and their possible mechanisms in L‐02 cells. High concentrations of fatty acids significantly induced excessive lipid accumulation and oxidative stress in L‐02 cells, which could only be reversed with 50 μΜ WY14643 (the PPARα agonist). Immunoblotting and qPCR analyses revealed that FFA downregulated the expression of proliferator‐activated receptor alpha (PPARα), which contributed to the increased activation of sterol regulatory element binding protein‐1c (SREBP‐1c). These results suggest that FFA induce lipid accumulation and oxidative stress in L‐02 cells by upregulating SREBP‐1c expression through the suppression of PPARα.  相似文献   

17.
SHR/NDmcr-cp (cp/cp) rats (SHR/NDcp) are an animal model of metabolic syndrome. A previous study of ours revealed drastic increases in the mass of palmitic (16:0), oleic (18:1n-9), palmitoleic (16:1n-7), cis-vaccenic (18:1n-7) and 5,8,11-eicosatrienoic acids in the liver of SHR/NDcp. However, detailed information on the class of lipid accumulated and the mechanism responsible for the overproduction of the accumulated lipid in the liver was not obtained. This study aimed to characterize the class of lipid accumulated and to explore the mechanism underlying the lipid accumulation in the liver of SHR/NDcp, in comparison with SHR/NDmcr-cp (+/+) (lean hypertensive littermates of SHR/NDcp) and Wistar Kyoto rats. In the liver of SHR/NDcp, de novo synthesis of fatty acids (16:0, 18:1n-9 and 16:1n-7) and triacylglycerol (TAG) synthesis were up-regulated and fatty acid β-oxidation was down-regulated. These perturbations of lipid metabolism caused fat accumulation in hepatocytes and accumulation of TAG, which were enriched with 16:0, 18:1n-9 and 16:1n-7, in the liver of SHR/NDcp. On the other hand, no changes were found in hepatic contents of diacylglycerol and unesterified fatty acid (FFA); among FFA, there were no differences in the hepatic concentrations of unesterified 16:0 and stearic acid between SHR/NDcp and two other groups of rats. Moreover, little change was brought about in the expression of genes responsive to endoplasmic reticulum stress in the liver of SHR/NDcp. These results may reinforce the pathophysiological role of stearoyl-CoA desaturase 1 and fatty acid elongase 6 in the liver of SHR/NDcp.  相似文献   

18.
Capparis spinosa has a large natural distribution over the Mediterranean basin. It is used in traditional medicines, and it is one of the most commonly found aromatics in the Mediterranean kitchen. In this paper, the total storage protein and lipids of Tunisian Capparis spinosa seeds were investigated, and the quantities were ca. 27% and ca. 33%, respectively. In this study also the composition of the aliphatic and triterpenic alcohols of C. spinosa was characterized for the first time. Aliphatic alcohol contents were ca. 45 mg kg−1 of total extracted lipids. Three compounds were identified, hexadecanol, octadecanol and tetracosanol, of which octadecanol was the major compound (ca. 28 mg kg−1). Triterpenic alcohol content was 396.82 mg kg−1. Citrostadienol was the major compound (ca. 170 mg kg−1). β-Amyrin, gramisterol, cycloartanol and 2,4 methylcycloartenol were also detected and identified.  相似文献   

19.
This study aims to investigate the effect of different dietary lipid levels on the growth performance, fatty acids and their relative enzymes, and expression of peroxisome proliferator-activated receptor α (PPARα), leptin, and adiponectin genes in juvenile genetic improvement farmed tilapia (GIFT, Oreochromis niloticus). Six groups of the juveniles with 40 d of age in triplicate are fed for 90 d using six iso-nitrogen (34 g/100 g dietary protein) diets with different lipid levels: 0.35 (control), 3.35, 6.35, 9.35, 12.35, and 15.35 g/100 g adjusted by adding fish oil. It is concluded that the greatest effect is found in the diet with 9.35 g/100 g of lipid, which is the optimal dietary lipid in the experiment and can be applied in developing the optimal diet for juvenile GIFT tilapia to promote the development of tilapia aquaculture industry. Practical Applications: It is found that the diets with lipid supplementation can significantly influence the expression of PPARα, leptin, and adiponectin genes of juvenile GIFT tilapia and recognized that dietary lipid supplementation can significantly affect their growth performance, fatty acids, and relative enzymes. The greatest effect is found in the diet with 9.35 g/100 g of lipid, which is the optimal dietary lipid in the experiment. The findings can be applied in developing the optimal diet for juvenile GIFT tilapia, which will promote considerably the development of tilapia aquaculture industry.  相似文献   

20.
Torstensen BE  Lie O  Frøyland L 《Lipids》2000,35(6):653-664
Triplicate groups of Atlantic salmon (Salmo salar L.) were fed four diets containing different oils as the sole lipid source, i.e., capelin oil, oleic acid-enriched sunflower oil, a 1∶1 (w/w) mixture of capelin oil and oleic acid-enriched sunflower oil, and palm oil (PO). The β-oxidation capacity, protein utilization, digestibility of dietary fatty acids and fatty acid composition of lipoproteins, plasma, liver, belly flap, red and white muscle were measured. Further, the lipid class and protein levels in the lipoproteins were analyzed. The different dietary fatty acid compositions did not significantly affect protein utilization or β-oxidation capacity in red muscle. The levels of total cholesterol, triacylglycerols, and protein in very low density lipoprotein (VLDL), low density lipoprotein (LDL), high density lipoprotein (HDL), and plasma were not significantly affected by the dietary fatty acids. VLDL, LDL, and HDL fatty acid compositions were decreasingly affected by dietary fatty acid composition. Dietary fatty acid composition significantly affected both the relative fatty acid composition and the amount of fatty acids (mg fatty acid per g tissue, wet weight) in belly flap, liver, red and white muscle. Apparent digestibility of the fatty acids measured by adding yttrium oxide as inert marker, was significantly lower in fish fed the PO diet compared to the other three diets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号