首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lipases Novozym 435, Lipozyme TL IM and Lipozyme RM IM were employed in the production of lower acylglycerols (LG), i.e. mono‐ (MAG) and diacylglycerols (DAG), rich in unsaturated fatty acids from sesame oil in batch reactors. The effect of the molar ratio of ethanol to fatty acids on the reusability of these immobilized lipases was studied in detail. The effects of pretreatment on lipase activity for ethanolysis were investigated. Glycerol had a strong product inhibition effect on the ethanolysis reaction, and a relatively large excess of ethanol was necessary to remove the glycerol adsorbed on these biocatalysts. The enzymatic activity was drastically reduced by addition of water to the reaction medium. The presence of organic solvents (hexane and acetone) did not favor the production of LG. For the Novozym 435‐catalyzed reaction, optimum conditions were a molar ratio of ethanol to fatty acid residues of 5 : 1, 15 wt‐% lipase and 50 °C. For Lipozyme TL IM, the optimum conditions were a molar ratio of ethanol to fatty acid residues of 5 : 1, 20 wt‐% biocatalyst, and 30 °C. Novozym 435 and Lipozyme TL IM produced LG with molar ratios of unsaturated to saturated fatty acids of 20.4 in 1 h and 25.3 in 5 h, respectively. In the original oil, this ratio was 5. For trials conducted under optimum conditions, the products from the Novozym 435 trials contained 21.8 wt‐% triacylglycerols (TAG), 24 wt‐% DAG and 54.2 wt‐% MAG. The products of the Lipozyme TL IM trials consisted of 12.9 wt‐% DAG and 87.1 wt‐% MAG. No TAG species were detected.  相似文献   

2.
Diacylglycerols (DAG) were enzymatically produced by lipase‐catalysed esterification of glycerol with fatty acids from soybean oil deodoriser distillate (SODD). Effects of reaction parameters such as reaction time, temperature, enzyme type, enzyme load, substrate molar ratio and water content, as well as the effect of molecular sieves as water adsorbent were studied. Lipozyme RM IM was determined to be the most effective among the lipases screened. The following conditions yielded 69.9% DAG (all percentages are wt/wt): 4 h reaction time, 65 °C reaction temperature, 10% Lipozyme RM IM, 2.5:1 fatty acid to glycerol molar ratio, and 30% molecular sieves. DAG synthesis of 11.9% was still observed at 10% water content. After purification, the product oil contained 86.3% DAG. This oil consisted predominantly of 1,3‐diolein (19.1%), 1‐oleoyl‐3‐linoleoyl‐glycerol (18.2%) and 1‐oleoyl‐2‐linoleoyl‐glycerol (16.6%). The fatty acid profile of the oil was similar to that of refined, bleached and deodorised (RBD) soybean oil. The % ratio of 1,3‐ to 1,2‐positional isomers of DAG was at 56:44.  相似文献   

3.
Lecitase® Ultra, a phospholipase, was explored as an effective biocatalyst for direct esterification of glycerol with oleic acid to produce 1,3‐DAG. Experiments were carried out in batch mode, and optimal reaction conditions were evaluated. In comparison with several organic solvent mediums, the solvent‐free system was found to be more beneficial for this esterification reaction, which was further studied to investigate the reaction conditions including oleic acid/glycerol mole ratio, temperature, initial water content, enzyme load, and operating time. The results showed that Lecitase® Ultra catalyzed a fast synthesis of 1,3‐DAG by direct esterification in a solvent‐free medium. Under the optimal reaction conditions, a short reaction time 1.5 h was found to achieve the fatty acid esterification efficiency of 80.3 ± 1.2% and 1,3‐DAG content of 54.8 ± 1.6 wt% (lipid layer of reaction mixture mass). The reusability of Lecitase® Ultra was evaluated via recycling the excess glycerol layer in the reaction system. DAG in the upper lipid layer of reaction mixture was purified by molecular distillation and the 1,3‐DAG‐enriched oil with a purity of about 75 wt% was obtained. Practical applications: The new Lecitase® Ultra catalyzed process for production of 1,3‐DAG from glycerol and oleic acid described in this study provides several advantages over conventional methods including short reaction time, the absence of a solvents and a high product yield.  相似文献   

4.
Synthesis of MAG of CLA with Penicillium camembertii lipase   总被引:1,自引:0,他引:1  
CLA has various physiological activities, and a FFA mixture containing almost equal amounts of cis-9,trans-11 and trans-10,cis-12 CLA (named FFA-CLA) has been commercialized. We attempted to produce MAG of CLA by a two-step successive reaction. The first step was esterification of FFA-CLA with glycerol. A mixture of FFA-CLA/glycerol (1∶5, mol/mol), 2 wt% water, and 200 units/g of Penicillium camembertii mono-and diacylglycerol lipase was agitated at 30°C to form a homogeneous emulsion. The esterification degree reached 84% after 10 h. To further increase the degree, the reaction was continued with dehydration at 5 mm Hg. The esterification degree reached 95% after 24 h (34 h in total), and the reaction mixture contained 50 wt% MAG and 44 wt% DAG. The second step was glycerolysis of the resulting DAG. The reaction mixture in the first-step esterification was transferred from the reactor to a beaker and was solidified by vigorous agitation on ice. When the solidified mixture was allowed to stand at 5°C for 15 d, glycerolysis of DAG proceeded successfully, and MAG content in the reaction mixture increased to 88.6 wt%. Hydrolysis of the acylglycerols was not observed during the second reaction. FA composition in the synthesized MAG was completely the same as that in the original FFA-CLA, showing that Penicillium lipase does not have selectivity toward FA in the FFA-CLA preparation.  相似文献   

5.
A packed-bed reactor (length 6.5 cm; id 4.65 mm) has been used to enrich docosahexaenoic acid (DHA) via the lipase-catalyzed esterification of the fatty acid from tuna oil with ethanol. Lipozyme RM IM (from Rhizomucor miehei) was used for the esterification reaction because of its ability to discriminate between different fatty acids, and several reaction parameters, including the temperature, molar ratio of substrates, and water content were explored as a function of residence time. In this way, the optimum conditions for the enrichment process were determined to be a temperature of 20 °C, a molar ratio of 1:5 (i.e., fatty acid to ethanol), and a water content of 1.0 % (based on the total substrate weight). Under these conditions, a residence time of 90 min gave a DHA concentration of 70 wt% and a DHA recovery yield of 87 wt% in the residual fatty acid fraction.  相似文献   

6.
γ-Linolenic acid (GLA) rich triacylglycerol (TAG) was successfully synthesized from glyceride, instead of glycerol, and fatty acid (FA) via Lipozyme TL IM-catalyzed esterification as a novel strategy. In the first step, GLA was enriched into glyceride fraction from borage oil by Candida rugosa lipase-catalyzed hydrolysis. The glyceride was separated from the reaction mixture by molecular distillation. GLA was enriched from 20.64% in borage oil to 45.94% in the glyceride fraction under optimum conditions. In the second step, the Lipozyme TL IM-catalyzed synthesis of TAG was carried out with the glyceride, and the FA obtained by saponification of a portion of the glyceride. The optimum conditions were the temperature of 50°C, the enzyme loading of 10%, and the vacuum level of 20 mmHg, respectively. The maximum TAG content of approximately 92% was achieved after 12 h under the optimum conditions.  相似文献   

7.
A mixture of beef tallow and rapeseed oil (1:1, wt/wt) was interesterified using sodium methoxide or immobilized lipases from Rhizomucor miehei (Lipozyme IM) and Candida antarctica (Novozym 435) as catalysts. Chemical interesterifications were carried out at 60 and 90 °C for 0.5 and 1.5 h using 0.4, 0.6 and 1.0 wt‐% CH3ONa. Enzymatic interesterifications were carried out at 60 °C for 8 h with Lipozyme IM or at 80 °C for 4 h with Novozym 435. The biocatalyst doses were kept constant (8 wt‐%), but the water content was varied from 2 to 10 wt‐%. The starting mixture and the interesterified products were separated by column chromatography into a pure triacylglycerol fraction and a nontriacylglycerol fraction, which contained free fatty acids, mono‐, and diacylglycerols. It was found that the concentration of free fatty acids and partial acylglycerols increased after interesterification. The slip melting points and solid fat contents of the triacylglycerol fractions isolated from interesterified fats were lower compared with the nonesterified blends. The sn‐2 and sn‐1,3 distribution of fatty acids in the TAG fractions before and after interesterification were determined. These distributions were random after chemical interesterification and near random when Novozym 435 was used. When Lipozyme IM was used, the fatty acid composition at the sn‐2 position remained practically unchanged, compared with the starting blend. The interesterified fats and isolated triacylglycerols had reduced oxidative stabilities, as assessed by Rancimat induction times. Addition of 0.02% BHA and BHT to the interesterified fats improved their stabilities.  相似文献   

8.
Simple alkyl FA esters have numerous uses, including serving as biodiesel, a fuel for compression ignition (diesel) engines. The use of acid-catalyzed esterification for the synthesis of FAME from acid oil, a by-product of edible vegetable oil refining that is produced from soapstock, was investigated. Soybean acid oil contained 59.3 wt% FFA, 28.0 wt% TAG, 4.4 wt% DAG, and less than 1% MAG. Maximum esterification occurred at 65°C and 26 h reaction at a molar ratio of total FA/methanol/sulfuric acid of 1∶15∶1.5. Residual unreacted species under these conditions, as a fraction of their content in unesterified acid oil, were FFA, 6.6%; TAG, 5.8%; and DAG, 2.6%. This corresponds to estimated concentrations of FFA, 3.2%; TAG, 1.3%; and DAG, 0.2%, on a mass basis, in the ester product. In an alternative approach, the acylglycerol species in soapstock were saponified prior to acidulation. High-acid (HA) acid oil made from this saponified soapstock had an FFA content of 96.2 wt% and no detectable TAG, DAG, or MAG. Optimal esterification conditions for HA acid oil at 65°C were a mole ratio of FFA/methanol/acid of 1∶1.8∶0.17, and 14 h incubation. FAME recovery under these conditions was 89% of theoretical, and the residual unesterified FFA content was approximately 20 mg/g. This was reduced to 3.5 mg/g, below the maximum FFA level allowed for biodiesel, by washing with NaCl, NaHCO3, and Ca(OH)2 solutions. Alternatively, by subjecting the unwashed ester layer to a second esterification, the FFA level was reduced to less than 2 mg/g. The acid value of this material exceeded the maximum allowed for biodiesel, but was reduced to an acceptable value by a brief wash with 0.5 N NaOH.  相似文献   

9.
Acid oil, a by-product of vegetable oil refining, was enzymatically converted to fatty acid methyl esters (FAME). Acid oil contained free fatty acids (FFA), acylglycerols, and lipophilic compounds. First, acylglycerols (11 wt%) were hydrolyzed at 30 °C by 20 units Candida rugosa lipase/g-mixture with 40 wt% water. The resulting oil layer containing 92 wt% FFA was used for the next reaction, methyl esterification of FFA to FAME by immobilized Candida antarctica lipase. A mixture of 66 wt% oil layer and 34 wt% methanol (5 mol for FFA) were shaken at 30 °C with 1.0 wt% lipase. The degree of esterification reached 96% after 24 h. The resulting reaction mixture was then dehydrated and subjected to the second esterification that was conducted with 2.2 wt% methanol (5 mol for residual FFA) and 1.0 wt% immobilized lipase. The degree of esterification of residual FFA reached 44%. The degree increased successfully to 72% (total degree of esterification 99%) by conducting the reaction in the presence of 10 wt% glycerol, because water in the oil layer was attracted to the glycerol layer. Over 98% of total esterification was maintained, even though the first and the second esterification reactions were repeated every 24 h for 40 days. The enzymatic process comprising hydrolysis and methyl esterification produced an oil containing 91 wt% FAME, 1 wt% FFA, 1 wt% acylglycerols, and 7 wt% lipophilic compounds.  相似文献   

10.
Pseudomonas aeruginosa 42A2 is known to produce two hydroxy‐fatty acids, 10(S)‐hydroxy‐8(E)‐octadecenoic and 7,10(S,S)‐dihydroxy‐8(E)‐octadecenoic acids, when cultivated in a mineral medium using oleic acid as a single carbon source. These compounds were purified, 91 and 96 % respectively, to produce two new families of estolides: trans‐8‐estolides and saturated estolides from the monohydroxylated monomer. trans‐8‐estolides were produced by three different lipases (Novozym 435, Lipozyme RM IM and Lipozyme TL IM) with reaction yields between 68.4 ± 2.1 and 94.7 ± 2.4 % in a solvent‐free medium at 80 °C in 168 h under vacuum. Novozym 435 was found to be the most efficient biocatalyst for both hydroxy‐fatty acids with reaction yields of 71.7 ± 2.3 and 94.7 ± 2.4 %, respectively. Moreover, saturated estolides were also produced from a saturated 10(S)‐hydroxy‐8(E)‐octadecenoic. These estolides were chemically and enzymatically synthesized with Novozym 435, under the previous described reaction conditions with yields of 60.7 ± 2.1 and 71.2 ± 2.3 % respectively. Finally, viscosity, glass transition temperature, decomposition temperatures and enthalpies were determined to characterize both types of estolides. Thermal applications for both types of polyesters were improved since glass transition temperatures were lowered and decomposition temperatures were increased, with respect to their corresponding substrates.  相似文献   

11.
In this work we report experimental data regarding the glycerolysis of olive oil using Novozym 435 in tert‐butanol organic system aiming at the production of monoacylglycerols (MAG) and diacylglycerols (DAG). Experiments were performed in batch mode, recording the reaction kinetics and evaluating the effects of temperature, enzyme concentration, tert‐butanol:oil/glycerol volume ratio and using solvent to substrates ratio of 1:1 and 5:1 v/v. Experimental results showed that lipase‐catalyzed glycerolysis in tert‐butanol might be a potential route for the production of high contents of MAG and DAG. The results also showed that it is possible to maximize the production of MAG and/or DAG, depending on the glycerol to oil molar ratio employed in the reactional system. Higher contents of MAG (53 wt%) and DAG (50 wt%) were achieved using glycerol to oil molar ratio of 3:1/6:1 and 0.5:1.5, respectively, both in 8 h of reaction at 70°C, 600 rpm and enzyme concentration of 10 wt%.  相似文献   

12.
Enzymatic glycerolysis was explored in this paper for the production of diacylglycerol (DAG) oils from palm olein. Three commercial enzymes, Lipozyme TL IM, Lipozyme RM IM and Novozym 435 were used for their ability to synthesize DAG in a solvent‐free system. Novozym 435 was found to be the more effective enzyme, resulting in a high DAG production even in the absence of an adsorbent such as silica gel. The yields of DAG were between 43 and 50 wt‐%. Lipozyme TL IM and RM IM, being supported on hydrophilic materials, require an adsorbent to allow slow release of glycerol for reaction with the enzyme and oil. In the absence of silica, no reaction was observed. The success of the reaction is therefore very dependent on the amount of silica used. The yields of DAG using Lipozyme TL IM and RM IM were 52 and 45 wt‐%, respectively. In addition, the degree of reduction in tocopherols and tocotrienols appeared correlated with the efficacy of the glycerolysis reaction. Changes in the slip melting points and solid fat contents of the products are indicative of the reaction occurring.  相似文献   

13.
Detergent fractionation (Lanza process) offers a valuable separation process for edible oils that contain varying amounts of saturated and unsaturated fatty acids. The rice bran oil fatty acid distillate (RBOFAD), obtained as a major byproduct of rice bran oil deacidification refining process, was fractionated by detergent solution into a fatty acid mixture as follows: low-melting (19.00 °C) fraction of fatty acids as olein fraction (44.50 g/100 g) and high-melting (49.00 °C) fatty acids as stearin fraction (37.15 g/100 g). A high amount of palmitic acid (42.75 wt%) is present in stearin fraction, while oleic acid is higher (48.21 wt%) in the olein fraction. The stearin and olein fractions of RBOFAD with very high content of free fatty acids are converted into neutral glycerides by autocatalytic esterification reaction with a theoretical amount of glycerol at high temperatures (130–230 °C) and at a reduced pressure (30 mmHg). Acid value, peroxide value, saponification value, and unsaponifiable matters are important analytical parameters to identity for quality assurance. These neutral glyceride-rich stearin and olein fractions, along with unsaponifiable matters, can be used as nutritionally and functionally superior quality food ingredients in margarine and in baked goods as shortenings.  相似文献   

14.
Synthesis of a fatty acid ethyl ester via the lipase‐catalyzed transesterification of acid oil and ethanol was investigated in a continuous reactor. Lipozyme TL IM was employed as the immobilized lipase. This immobilized lipase derived from Thermomyces lanuginosus was purchased from Novozymes (Seoul, Korea). The acid oil was prepared by the acidification of soapstock formed as a by‐product during the refining of rice bran oil. The parameters investigated were water content, temperature, and molar ratio of substrates. The relative activity of Lipozyme TL IM was assessed during the repeated use of the immobilized lipase. The water content of the substrate had a considerable effect on the yield and the optimum water content was 4 %. The optimum temperature and molar ratio of acid oil to ethanol were 20 °C and 1:4, respectively. The maximum yield of approximately 92 % was achieved under the optimum conditions. The corresponding compositions were 92 % fatty acid ethyl esters, 3 % fatty acids, and 5 % acylglycerols. When glycerol formed during the reaction was removed by intermittent washing with ethanol, the relative activity of lipase was maintained over 82 % for a total usage of 27 cycles. For a mean residence time of 4 h, the half‐life times of Lipozyme TL IM on the control (unwashed) and treatment (washed) were 39 and 45 cycles, respectively.  相似文献   

15.
Biodiesel is conventionally produced by alkaline‐catalyzed transesterification, which requires high‐purity oils. However, low‐quality oils can be used as feedstocks for the production of biodiesel by enzyme‐catalyzed reactions. The use of enzymes has several advantages, such as the absence of saponification side reactions, production of high‐purity glycerol co‐product, and low‐cost downstream processing. In this work, biodiesel was produced from lipase‐catalyzed hydrolysis of waste cooking oil (WCO) followed by esterification of the hydrolyzed WCO (HWCO). The hydrolysis of acylglycerols was carried out at 30 °C in salt‐free water (WCO/water ratio of 1:4, v/v) and the esterification of HWCO was carried out at 40 °C with ethanol in a solvent‐free medium (HWCO/ethanol molar ratio of 1:7). The hydrolysis and esterification steps were carried out using immobilized Thermomyces lanuginosus lipase (TLL/WCO ratio of 1:5.6, w/w) and immobilized Candida antarctica lipase B (10 wt%, CALB/HWCO) as biocatalysts, respectively. The hydrolysis of acylglycerols was almost complete after 12 h (ca. 94 %), and in the esterification step, the conversion was around 90 % after 6 h. The purified biodiesel had 91.8 wt% of fatty acid ethyl esters, 0.53 wt% of acylglycerols, 0.003 wt% of free glycerol, viscosity of 4.59 cP, and acid value of 10.88 mg KOH/g. Reuse hydrolysis and esterification assays showed that the immobilized enzymes could be recycled five times in 10‐h batches, under the conditions described above. TLL was greatly inactivated under the assay conditions, whereas CALB remained fully active. The results showed that WCO is a promising feedstock for use in the production of biodiesel.  相似文献   

16.
Partial hydrolysis of palm olein catalyzed by phospholipase A1 (Lecitase Ultra) in a solvent‐free system was carried out to produce diacylglycerol (DAG)‐enriched palm olein (DEPO). Four reaction parameters, namely, reaction time (2–10 h), water content (20–60 wt‐% of the oil mass), enzyme load (10–50 U/g of the oil mass), and reaction temperature (30–60 °C), were investigated. The optimal conditions for partial hydrolysis of palm olein catalyzed by Lecitase Ultra were obtained by an orthogonal experiment as follows: 45 °C reaction temperature, 44 wt‐% water content, 8 h reaction time, and an enzyme load of 34 U/g. The upper oil layer of the reaction mixture with an acid value of 54.26 ± 0.86 mg KOH/g was first molecularly distilled at 150 °C to yield a DEPO with 35.51 wt‐% of DAG. The DEPO was distilled again at 250 °C to obtain a DAG oil with 74.52 wt‐% of DAG. The composition of the acylglycerols of palm olein and the DEPO were analyzed and identified by high‐performance liquid chromatography (HPLC) and HPLC/electrospray ionization/mass spectrometry. The released fatty acids from the partial hydrolysis of palm olein catalyzed by phospholipase A1 showed a higher saturated fatty acid content than that of the raw material.  相似文献   

17.
An alternative process for the deacidification of high acid palm kernel oil (PKO) and mowrah fat, MF, was investigated by autocatalytic and enzyme (Mucor miehei)‐catalyzed esterification of free fatty acids (FFA). In the process monoglyceride (MG) or glycerol was used as esterifying agent. The results of the autocatalytic esterification process were compared with that of bioesterification with respect to reduction of FFA. For the former process the optimum reaction temperature and oil to MG or glycerol proportion were established. The optimum reaction temperature for PKO free fatty acids with stoichiometric quantity of glycerol is 160—165 °C (at 10 mm Hg pressure (1.33 kPa)) and after 6 h the FFA content is reduced to 1.6%, w/w, (from 25.0%, w/w, original). However, if a stoichiometric amount of MG is used as an esterifying agent the optimum esterification temperature is found to be 195—200 °C (at 10 mm Hg pressure (1.33 kPa)), and after 8 h the FFA content is reduced to 3.4%, w/w. On the contrary, biorefining of PKO at 60 °C temperature and 10 mm Hg pressure (1.33 kPa) using optimum (40% excess) quantity of glycerol or 50% excess MG reduces the FFA level to 1.2% and 0.7%, w/w, respectively. Similar study on bio‐ and auto‐catalytic esterification of MF was also carried out and got comparable results. The final products were then characterized.  相似文献   

18.
Earlier findings on the nutritional benefits of diacylglycerols (DAGs) have attracted much attention on the synthesis of DAGs. In this study, we reported an improved method for the lipase‐catalyzed synthesis of 1,3‐diolein by the irreversible glycerolysis of vinyl oleate with glycerol. The effects of reaction system, lipase loading, molar ratio of vinyl oleate to glycerol, reaction temperature and time on 1,3‐diolein content in crude reaction mixture were investigated. When the reaction was conducted in a solvent‐free system at 30 °C for 8 h by reacting 2 mmol vinyl oleate with 1 mmol glycerol with 8 % (w/w, relative to total reactants) Lipozyme RM IM (Novozymes, Beijing, China) as catalyst, there were 90.5 ± 2.9 % (area/area) 1,3‐diolein and (3.3 ± 0.3) % 1,2‐diolein produced. After purification, 1,3‐diolein was obtained at 81.4 % yield with 98.2 % purity. The lipase‐catalyzed synthesis of 1,3‐diolein using vinyl oleate as acyl donor by glycerolysis was also conducted using a medium with 50 mmol of glycerol and 100 mmol vinyl oleate. Compared to enzymatic esterification in a solvent, enzymatic glycerolysis for the synthesis 1,3‐diolein is more effective due to the irreversible reaction, mild due to the low reaction temperature, and environmentally benign due to the use of solvent‐free reaction system.  相似文献   

19.
This paper reports on the synthesis of triglycerides by enzymatic esterification of polyunsaturated fatty acids (PUFA) with glycerol. A PUFA concentrate obtained from cod liver oil was used to optimize the reaction to favor triglyceride synthesis with lipases. The type and amount of lipase and organic solvent, glycerol content, temperature, water content, and amount and time of addition of molecular sieves were studied. The optimal reaction mixture and conditions were: 9 mL hexane, 60°C, 0.5% (vol/vol) water, 1 g molecular sieves added after 24 h of reaction, glycerol/fatty acid molar ratio 1:3 and 100 mg of Novozym 435 (Novo Nordisk A/S) lipase. Under these conditions, an enriched triglyceride yiedl of 84.7% containing 27.4% eicosapentaenoic acid and 45.1% docosahexaenoic acid was obtained from a cod liver oil PUFA concentrate.  相似文献   

20.
Production of MAG with CLA using Penicillium camembertii mono- and diacylglycerol lipase (referred to as lipase) was attempted for the purpose of expanding the application of CLA. The commercial product of CLA (referred to as FFA-CLA) is a FFA mixture containing almost equal amounts of 9cis,11trans (9c,11t)-CLA and 10t,12c-CLA. Esterification of FFA-CLA with glycerol without dehydration achieved 84% esterification but produced almost equal amounts of MAG and DAG. Esterification with dehydration not only achieved a high degree of esterification but also suppressed the formation of DAG. When a mixture of FFA-CLA/glycerol (1∶2, mol/mol), 1% water, and 200 units/g-mixture of P. camembertii lipase was agitated at 30°C for 72 h with dehydration at 5 mm Hg, the degree of esterification reached 95% and the contents of MAG and DAG were 90 and 6 wt%, respectively. This reaction system may be applied to the industrial production of MAG with unstable CLA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号