首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The triacylglycerols (TAG) containing dihydroxy fatty acids have been recently identified by mass spectrometry in castor oil. These new dihydroxy fatty acids were proposed as 11,12-dihydroxy-9-octadecenoic acid (diOH18:1), 11,12-dihydroxy-9,13-octadecadienoic acid (diOH18:2) and 11,12-dihydroxyoctadecanoic acid (diOH18:0). The ratios of regioisomers of the TAG were estimated by fragment ions from the loss of fatty acids at the sn-2 position as α,β-unsaturated fatty acids by electro spray ionization-mass spectrometry of the lithium adducts (MS3). The content of regioisomeric diOH18:1-OH18:1-diOH18:1 (ABA, with two different fatty acids) was about 92% in the total of stereoisomeric diOH18:1-OH18:1-diOH18:1, OH18:1-diOH18:1-diOH18:1 and diOH18:1-diOH18:1-OH18:1 combined. The approximate contents of other regioisomers were as follows: diOH18:1-OH18:1-OH18:1 (92%), diOH18:1-diOH18:0-diOH18:1 (91%), diOH18:2-OH18:1-OH18:1 (80%) and diOH18:0-OH18:1-OH18:1 (96%). The ratios of regioisomers of TAG (ABC) containing three different fatty acids were estimated as about 7:1:2 (OH18:1:diOH18:1:diOH18:2) and about 7:2:1 (OH18:1:diOH18:0:diOH18:1). Ricinoleate (OH18:1) was predominately at the sn-2 position of TAG (both AAB and ABC) containing dihydroxy fatty acids and ricinoleate. Dihydroxy fatty acids were mainly at the sn-1,3 positions of TAG containing dihydroxy fatty acids and ricinoleate in castor oil. The ratios of the three regioisomers of TAG (ABC) containing three different fatty acids by mass spectrometry are first reported here.  相似文献   

2.
Ricinoleate, a monohydroxy fatty acid in castor oil, has many industrial uses. Dihydroxy and trihydroxy fatty acids can also be used in industry. We report here the identification of diacylglycerols (DAG) and triacylglycerols (TAG) containing trihydroxy fatty acids in castor oil. The C18 HPLC fractions of castor oil were used for mass spectrometry of the lithium adducts of acylglycerols to identify trihydroxy fatty acids and the acylglycerols containing trihydroxy fatty acids. Two DAG identified were triOH18:1–diOH18:1 and triOH18:0–OH18:1. Four TAG identified were triOH18:1–OH18:1–OH18:1, triOH18:0–OH18:1–OH18:1, triOH18:1–OH18:1–diOH18:1 and triOH18:0–OH18:1–diOH18:1. The structures of these two newly identified trihydroxy fatty acids were proposed as 11,12,13-trihydroxy-9-octadecenoic acid and 11,12,13-trihydroxyoctadecanoic acid. The locations of these trihydroxy fatty acids on the glycerol backbone were almost 100% at the sn-1,3 positions or at trace levels at the sn-2 position. The content of these acylglycerols containing trihydroxy fatty acids was at the level of about 1% or less in castor oil.  相似文献   

3.
Castor oil can be used in industry. The molecular species of triacylglycerols containing hydroxy fatty acids (FA) in castor oil have been identified. We report here the identification of twelve diacylglycerols (DAG) containing hydroxy FA in castor oil using positive ion electrospray ionization mass spectrometry of the lithium adducts. They were RR (diricinolein, R is ricinoleate), RL, RS, R‐diOH18:0, R‐diOH18:1, R‐diOH18:2, R‐triOH18:0, R‐triOH18:1, R‐triOH18:2, diOH18:0‐diOH18:1, diOH18:1‐diOH18:1 and diOH18:1‐diOH18:2. The MS2 fragment ions, [M + Li ? FA]+ and [FA + Li]+, from the lithium adducts of DAG containing hydroxy FA (one or two hydroxy FA), were used for the identification. The additional fragment ions from the neutral losses of FA lithium salts [M + Li ? FALi]+ were used for the identification of eleven DAG containing two normal FA in a soybean oil bioconversion product. The MS2 fragment ions from the neutral losses of FA lithium salts [M + Li ? FALi]+ were not detected from the DAG containing hydroxy FA. The DAG containing FA with more hydroxyl groups than the other FA on the same DAG molecule tended to have a prominent fragment ion [FA + Li]+ and an undetectable fragment ion [M + Li ? FA]+ while the FA was the more hydroxylated FA. Also the less hydroxylated FA of a DAG tended to have a prominent fragment ion [M + Li ? FA]+ and an undetectable fragment ion [FA + Li]+ while the FA was the less hydroxylated FA.  相似文献   

4.
Oils from the seeds of caraway (Carum carvi), carrot (Daucus carota), celery (Apium graveolens) and parsley (Petroselinum crispum), all from the Apiaceae family, were analyzed by gas chromatography for their triacylglycerol (TAG) composition and fatty acid (FA) distribution between the sn‐1(3) and sn‐2 positions of TAG. Twenty‐two TAG species were quantified. Glyceryl tripetroselinate was the major TAG species in seed oils of carrot, celery and parsley, with levels ranging from 38.7 to 55.3%. In caraway seed oil, dipetroselinoyllinoleoylglycerol was the major TAG species at 21.2%, while the glyceryl tripetroselinate content was 11.4%. Other TAG species were linoleoyloleoylpetroselinoylglycerol and dipetroselinoyloleoylglycerol. Predominantly, TAG were triunsaturated (72.2–84.0%) with diunsaturates at 14.4–25.9%, and small amounts of monounsaturated TAG. Results for regiospecific analysis showed a non‐random FA distribution in Apiaceae for palmitic, petroselinic, linoleic and oleic acids. Petroselinic acid was predominantly located at the sn‐1(3) position in carrot, celery and parsley seed oils, while it was mainly at the sn‐2 position in caraway seed oil. The distribution of linoleic acid was opposite to that of petroselinic acid. Oleic acid was mostly located at the sn‐2 position, except for caraway, where it was evenly distributed between the sn‐1(3) and sn‐2 positions. Both the saturated FA, palmitic and stearic acid, were located mainly at the sn‐1(3) position. The presence of a high level of tripetroselinin in parsley seed oil (55.3%) makes it a potential source for the production of petroselinic acid.  相似文献   

5.
HPLC analysis of Echium plantagineum seed oil shows a complex triacylglycerol (TAG) profile. TAG species were separated on an analytical scale by HPLC and their fatty acid (FA) composition is reported. GLC analyses showed that some TAG fractions reached a stearidonic acid (SDA, 18:4n‐3) percentage significantly higher than that in the original oil. TAG separation on a bigger scale was also essayed, by means of a gravimetric normal‐phase chromatographic column, using silver ion‐silica gel as stationary phase. Gradient elution with solvents of increasing polarity was applied, allowing the separation of valuable TAG species containing γ‐linolenic acid (GLA, 18:3n‐6), α‐linolenic acid (ALA, 18:3n‐3) and SDA as the main constituents (more than 85% of the total FA). An enzymatic hydrolysis reaction showed the distribution of FA in the isolated species of TAG. SDA was the major FA in the sn‐2 position (more than 50% of total FA), followed by ALA (19%) and GLA (18.5%).  相似文献   

6.
Castor oil has many industrial uses because of its high content (90 %) of the hydroxy fatty acid, ricinoleic acid (OH1218:19). Lesquerella oil containing lesquerolic acid (Ls, OH1420:111) is potentially useful in industry. Ten molecular species of diacylglycerols and 74 molecular species of triacylglycerols in lesquerella (Physaria fendleri) oil were identified by electrospray ionization mass spectrometry as lithium adducts of acylglycerols in the HPLC fractions of lesquerella oil. Among them were: LsLsO, LsLsLn, LsLsL, LsLn–OH20:2, LsO–OH20:2 and LsL–OH20:2. The structures of the four new hydroxy fatty acid constituents of acylglycerols were proposed by the MS of the lithium adducts of fatty acids as (comparing to those in castor oil): OH1218:29,14 (OH1218:29,13 in castor oil), OH1218:39,14,16 (OH18:3 not detected in castor oil), diOH12,1318:29,14 (diOH11,1218:29,13 in castor oil) and diOH13,1420:111 (diOH20:1 not detected in castor oil, diOH11,1218:19 in castor oil). Trihydroxy fatty acids were not detected in lesquerella oil. The differences in the structures of these C18 hydroxy fatty acids between lesquerella and castor oils indicated that the polyhydroxy fatty acids were biosynthesized and were not the result of autoxidation products.  相似文献   

7.
Currant oils have special health properties due to their moderate contents of α‐linolenic, γ‐linolenic and stearidonic acids. The distribution of fatty acids (FA) in the triacylglycerols (TAG) may affect the beneficial effects. Seed oils of wild northern red currant (NRC) (Ribes spicatum L.) from Northern Finland and of wild alpine currant (AC) (R. alpinum L.) from the South‐West coast of Finland were investigated. The purified TAG were analysed by tandem mass spectrometry by applying the ammonia negative ion chemical ionisation – collision‐induced dissociation method. Molecular weight fractions rich in C18:3 FA and C18:4 FA were investigated. Of the total oil, the molecular weight species 54:7 (ACN:DB), 54:8 and 54:9 were more abundant in NRC than in AC, being 21.0%, 15.8%, 7.4% and 16.2%, 11.2%, 4.8%, respectively (p <0.05). The species 52:6 was more abundant in AC (3.1%) than in NRC (2.6%) (p <0.05). The preferential order of FA to be in the sn‐2 position in both berries was typically C18:1 > C18:2 > C18:4 > C18:3. No difference was observed between relative locations of C16:0 FA and C18:3 FA in either of the oils. Within the TAG consisting of FA combinations C18:3/C18:3/C18:1 (54:7), C18:1 was more preferentially in the sn‐2 position (p <0.05) in AC (93.2%) than in NRC (74.6%), and in the case of C18:3, the preference was vice versa. Within the molecular weight species 54:9, FA combination C18:4/C18:3/C18:2, linoleic acid preferentially occupied the secondary position (p <0.005) in both berries, and the proportion of the TAG regioisomer pair sn‐C18:3‐C18:4‐C18:2 + sn‐C18:2‐C18:4‐C18:3 was more abundant (30.2%) in NRC than in AC (15.3%). Within the TAG species 52:6, proportions of all the existing combinations, C16:0/C18:3/C18:3, C16:0/C18:4/C18:2 and C16:1/C18:3/C18:2, varied between the two berry species (p <0.005).  相似文献   

8.
Ten diacylglycerols (DAG) and 74 triacylglycerols (TAG) in the seed oil of Physaria fendleri were recently identified by high‐performance liquid chromatography (HPLC) and mass spectrometry (MS). These acylglycerols (AG) were quantified by HPLC with evaporative light scattering detector and electrospray ionization mass spectrometry of the lithium adducts of the AG in the HPLC fractions of lesquerella oil. The MS1 ion signal intensities of molecular ions [M + Li]+ in HPLC fractions of an HPLC peak were used to estimate the ratios of AG in the HPLC peak. The ratios of TAG with the same mass in HPLC fractions were estimated by the ratios of the sums of MS2 ion signal intensities from the neutral loss of the three fatty acids [M + Li ? FA]+. The ratio of DAG with the same mass were estimated by the ratio of the sums of two MS2 ion signal intensities [M + Li ? FA]+ and [FA + Li]+ from the two different FA of a DAG. We have estimated the contents of ten molecular species of DAG and 74 molecular species of TAG in P. fendleri oil using this new method. The content of ten DAG combined was about 1 % and 74 TAG was about 98 %. The contents of DAG in decreasing order were: LsLs (0.25 %), LsLn (0.25 %), LsO (0.24 %), and LsL (0.11 %); and the contents of TAG in decreasing order were: LsLsO (31.3 %), LsLsLn (24.9 %), LsLsL (15.8 %), LsL‐OH20:2 (4.3 %), LsO‐OH20:2 (2.8 %), and LsLn‐OH20:2 (2.5 %).  相似文献   

9.
An infant formula fat analog with capric acid mostly esterified at the sn‐1,3 positions, and substantial amounts of palmitic, docosahexaenoic (DHA), and arachidonic (ARA) acids at the sn‐2 position, was prepared by physically blending enzymatically synthesized structured lipids (SL) with vegetable oils. The components of the blend included high sn‐2 palmitic acid SL enriched with capric acid (SLCA), canola oil (CAO), corn oil (CO), high sn‐2 DHA (DHAOm), and high sn‐2 ARA (ARAOm) enzymatically modified oils. Each component was proportionally blended to match the fatty acid profile of commercial fat blends used for infant formula. The infant formula fat analog (IFFA1) was characterized for total and positional fatty acids (FA), triacylglycerol (TAG) molecular species, thermal behavior, and tocopherol content. IFFA1 contained 17.37 mol% total palmitic acid of which nearly 35 % was located at the sn‐2 position. The total capric acid content was 13.93 mol%. The content of DHA and ARA were 0.49 mol% (48.18 % at sn‐2) and 0.57 mol% (35.80 % at sn‐2), respectively. The predominant TAG were OPO (24.09 %), POP (15.70 %), OOO (11.53 %), and CLC (7.79 %). The melting completion and crystallization onset temperatures were 18.65 and ?2.19 °C, respectively. The total tocopherol content was 566.45 μg/g. This product might be suitable for commercial production of infant formulas.  相似文献   

10.
Lin JT  Chen JM  Chen P  Liao LP  McKeon TA 《Lipids》2002,37(10):991-995
As part of a program to elucidate castor oil biosynthesis, we have identified 36 molecular species of PC and 35 molecular species of PE isolated from castor microsomes after incubations with [14C]-labeled FA. The six [14C]FA studied were ricinoleate, stearate, oleate, linoleate, linolenate, and palmitate, which were the only FA identified in castor microsomal incubations. The incorporation of each of the six FA into PC was better than that into PE. The [14C]FA were incorporated almost exclusively into the sn-2 position of both PC and PE. The incorporation of [14C]stearate and [14C]palmitate into 2-acyl-PC was slower compared to the other four [14C]FA. The incorporation does not show any selectivity for the various lysoPC molecular species. The level of incorporation of [14C]FA in PC was in the order of: oleate>linolenate>palmitate>linoleate >stearate>ricinoleate, and in PE: linoleate>linolenate> oleate>palmitate>stearate>ricinoleate. In general, at the sn-1 position of both PC and PE, linoleate was the most abundant FA, palmitate was the next, and oleate, linolenate, stearate, and ricinoleate were minor FA. The activities of oleoyl-12-hydroxylase, oleoyl-12-desaturase seem unaffected by the FA at the sn-1 position of 2-oleoyl-PC. The FA in the sn-1 position of PC does not significantly affect the activity of phospholipase A2, whereas ricinoleate is preferentially removed from the sn-2 position of PC. The results show that (i) [14C]oleate is most actively incorporated to form 2-oleoyl-PC, the immediate substrate of oleoyl-12-hydroxylase; (ii) 2-ricinoleoyl-PC is formed mostly by the hydroxylation of 2-oleoyl-PC, not from the incorporation of ricinoleate into 2-ricinoleoyl-PC; and (iii) 2-oleoyl-PF is less actively formed than 2-oleoyl-PC.  相似文献   

11.
Positional‐species composition (PSC) of 1,2,3‐triacyl‐sn‐glycerols (TAG) from the arils of mature fruits of 13 species of Euonymus L. genus was established. The residues of six major fatty acids (FA), palmitic, stearic, hexadecenoic (H), octadecenoic (O), linoleic (L), and linolenic, were present in the TAG. PSC of TAG was determined by their partial lipase hydrolysis. By using hierarchical cluster and principal component analyses, it was definitely demonstrated that separate taxonomic units forming this genus were significantly distinguished as regards PSC of TAG. In particular, the Euonymus subgenus greatly exceeded the Kalonymus subgenus in both total content of L in TAG and in the rate of its incorporation into their mid‐position, while TAG of Kalonymus were marked by a prevalence of O‐TAG and sn‐2‐O isomers. Thus, these subgenera were significantly distinct in the rate of incorporation of O and L residues in the sn‐2 position of TAG molecules. Meanwhile, the TAG from the Euonymus section species were marked by an enhanced concentration of H and the incorporation of H in UUU TAG was much more active than in other TAG types. As for positional‐type composition of TAG, saturated FA were always virtually absent in the sn‐2 position of Euonymus aril TAG.  相似文献   

12.
The FA composition in the sn-2 position of TAG is routinely determined after porcine pancreatic lipase hydrolysis. However, the content of saturated FA increased when a pancreatic lipase preparation with higher specific activity was used. Lipase from Rhizopus delemar was selected as a potential replacement lipase for the following reasons: (i) The FA specificity is nearly equivalent in hydrolysis activity toward FA such as lauric, myristic, palmitic, palmitoleic, stearic, oleic, linoleic, and α-linolenic acids; and (ii) lipase from R. delemar hydrolyzes fatty acyl residues at the sn-1,3 positions of TAG. Acyl migration products were present at less than 0.8% in lipase hydrolysates containing 6–14% of sn-2 MAG. A reproducibility CV of less than 5% was obtained in a collaborative study in which the compositions of the main FA at the sn-2 position in olive oil were determined using lipase from R. delemar. This article was presented in part at the Biocatalysis Symposium, 94th AOCS Annual Meeting & Expo, Kansas City, Missouri, May 2003.  相似文献   

13.
Senanayake SP  Shahidi F 《Lipids》2002,37(8):803-810
Stereospecific analysis was carried out to establish positional distribution of FA in the TAG of DHA, EPA, and (EPA+DHA)-enriched oils. In this study, TAG of enzymatically modified oils were purified using a silicic acid column. The TAG were then subjected to positional distribution analysis using a modified procedure involving reductive cleavage with Grignard reagent. The results showed that in DHA-enriched borage oil (BO), DHA was randomly distributed over the three positions of TAG, whereas γ-linolenic acid (GLA) was mainly esterified at the sn-2 and-3 positions. In DHA-enriched evening primrose oil (EPO), however, DHA and GLA were concentrated in the sn-2 position. In EPA-enriched BO, EPA was randomly distributed over the three positions of TAG, similar to that observed for DHA. In EPA-enriched EPO, however, this FA was mainly located at the primary positions (sn-1 and sn-3) of TAG. In both oils, GLA was preferentially esterified at the sn-2 position. In (EPA+DHA)-enriched BO, EPA and DHA were mainly esterified at the sn-1 and -3 positions of TAG, whereas GLA was mainly located at the sn-2 position. In (EPA+DHA)-enriched EPO, GLA was mainly located at the sn-2 and-3 positions; EPA was preferentially esterified at the sn-1 and-3 positions, and DHA was found mainly at the sn-3 position.  相似文献   

14.
The distribution of FA between the sn-2 and sn-1,3 positions of TAG from Pistacia atlantica fruit oil of Algeria has been determined. Unsaturated FA showed a preference for the internal position. Linoleic and oleic acids occurred predominantly in the sn-2 position with lesser amounts evenly distributed between the sn-1 and sn-3 positions, as generally found in vegetable oils. The oil was found to contain TAG that were trisaturated (0.93%), disaturated (15.06%), monosaturated (44.64%), and triunsaturated (38.10%). The distribution of the TAG calculated using the lipase hydrolysis technique is slightly different from that determined with HPLC. This is particularly true for trioleoyl and trilinoleoylglycerols. In contrast, the agreement between theory and experiment is good for TAG containing two palmitoyl and one oleoyl, one oleoyl and two linoleoyl, and one palmitoyl and two oleoyl chains.  相似文献   

15.
Stereospecific analysis of TAG from a sunflower seed oil of Tunisian origin was performed. The TAG were first fractionated according to chain length and degree of unsaturation by RP-HPLC. The four major diacid- and triacid-TAG fractions were palmitoyldilinoleoyl-glycerol, dioleoyllinoleoylglycerol, oleoyldilinoleoylglycerol, and palmitoyloleoyl-linoleoyl-glycerol, amounting to 7.2, 16.6, 29.5, and 12 mol%, respectively. The TAG of the four fractions were individually submitted to stereospecific analysis, using a Grignard-based partial deacylation, separation of sn-1,2(2,3)-DAG from sn-1,3-DAG by boric acid-impregnated silica gel TLC plates, conversion of the sn-1,2(2,3)-DAG to their 3,5-dinitrophenylurethane (DNPU) derivatives, fractionation of DNPU derivatives by RP-HPLC, resolution of the DNPU-DAG by HPLC on a chiral column, transmethylation of each sn-DNPU-DAG fraction, and analysis of the resulting FAME by GC. The data obtained were used to determine the triacyl-sn-glycerol composition of the main TAG of the oil. Fifteen triacyl-sn-glycerols were identified and quantified, representing, along with the monoacid-TAG, trilinoleoylglycerol and trioleoylglycerol, more than 90% of the total oil TAG. The two major triacyl-sn-glycerols were trilinoleoyl-glycerol and 1-linoleoyl-2-linoleoyl-3-oleoyl-glycerol (18.6 and 18.5% of the total, respectively). Results clearly identified linoleic acid as the major FA at the sn-2 position, whereas oleic and palmitic acids were the major FA at the sn-3 position. The sn-1 position was occupied to nearly the same extent by linoleic and oleic acids, and to a greater extent by palmitic acid, which was practically absent at the sn-2 position.  相似文献   

16.
Human milk fat contains 20–25% palmitic acid (16∶0) and 30–35% oleic acid (18∶1). More than 60% of the plamitic acid occurs at the sn-2 position of the glycerol backbone. Palm oil is a rich source of both palmitic and oleic acids. The structured lipid 1,3-dioleyl-2-palmitoylglycerol (OPO) is an important ingredient in infant formula. OPO was synthesized from palm oil by a three-step method. In the first step, low-temperature fractionation was applied to palm oil FA, yielding a palmitic acid-rich fraction (87.8%) and an oleic acid-rich fraction (96%). The palmitic acid content was further increased to 98.3% by transforming palmitic acid into ethyl palmitate. In the second step, esterification of ethyl palmitate and glycerol catalyzed by lipase Novozym 435 under vacuum (40 mm Hg) was employed for the synthesis of tripalmitin. Finally, OPO was obtained by the reaction of tripalmitin. Finally, OPO was obtained by the reaction of tripalmitin with oleic acid catalyzed by Lipase IM 60. In this final step, the TAG content in the product acylglycerol mixture was 97%, and 66.1% oleic acid was incorporated into TAG. Analysis of the FA composition at the sn-2 position of TAG showed 90.7 mol% of palmitic acid and 9.3 mol% of oleic acid. OPO content in the product TAG was ca. 74 mol%. Thus, an efficient method was developed for the synthesis of OPO from palm oil.  相似文献   

17.
The sn position of fatty acids in seed oil lipids affects physiological function in pharmaceutical and dietary applications. In this study the composition of acyl-chain substituents in the sn positions of glycerol backbones in triacylglycerols (TAG) have been compared. TAG from native and transgenic medium-chain fatty acid-enriched rape seed oil were analyzed by reversed-phase high performance liquid chromatography coupled with online atmospheric-pressure chemical ionization ion-trap mass spectrometry. The transformation of summer rape with thioesterase and 3-ketoacyl-[ACP]-synthase genes of Cuphea lanceolata led to increased expression of 1.5% (w/w) caprylic acid (8:0), 6.7% (w/w) capric acid (10:0), 0.9% (w/w) lauric acid (12:0), and 0.2% (w/w) myristic acid (14:0). In contrast, linoleic (18:2n6) and alpha-linolenic acid (18:3n3) levels decreased compared with the original seed oil. The TAG sn position distribution of fatty acids was also modified. The original oil included eleven unique TAG species whereas the transgenic oil contained sixty. Twenty species were common to both oils. The transgenic oil included trioctadecenoyl-glycerol (18:1/18:1/18:1) and trioctadecatrienoyl-glycerol (18:3/18:3/18:3) whereas the native oil included only the latter. The transgenic TAG were dominated by combinations of caprylic, capric, lauric, myrisitic, palmitic (16:0), stearic (18:0), oleic (18:1n9), linoleic, arachidic (20:0), behenic (22:0), and lignoceric acids (24:0), which accounted for 52% of the total fat. In the original TAG palmitic, stearic, oleic, and linoleic acids accounted for 50% of the total fat. Medium-chain triacylglycerols with capric and lauric acids combined with stearic, oleic, linoleic, alpha-linolenic, arachidic, and gondoic acids (20:1n9) accounted for 25% of the transgenic oil. The medium-chain fatty acids were mainly integrated into the sn-1/3 position combined with the essential linoleic and alpha-linolenic acids at the sn-2 position. Eight species contained caprylic, capric, and lauric acids in the sn-2 position. The appearance of new TAG in the transgenic oil illustrates the extensive effect of genetic modification on fat metabolism by transformed plants and offers interesting possibilities for improved enteral applications.  相似文献   

18.
Paterson LJ  Weselake RJ  Mir PS  Mir Z 《Lipids》2002,37(6):605-611
The content and positional distribution of CLA in TAG fractions of lamb tissues was examined with either preformed CLA or the linoleic acid precursor of CLA in the diet as experimental treatments. The CLA content of phospholipid (PL) from these tissues was also examined. Thirteen lambs were randomized to the following dietary treatments: (i) control diet (no supplement); (ii) CLA supplementation (0.33 g d−1 for 21 d prior to weaning) to milk-replacer of pre-ruminating lambs, or (iii) feeding linoleic acid-rich oil (6% safflower oil on a dry matter basis) to weaned ruminating lambs. At slaughter, tissue samples were procured from diaphragm, rib muscle, and subcutaneous (SC) adipose tissue. Safflower oil supplementation in the diet resulted in an increase in CLA content of the TAG from diaphragm, rib muscle, and SC adipose tissue by about threefold (P<0.05) on a mol% basis. CLA was localized to the sn-1/3 positions of TAG. Animals that received pre-formed CLA, however, had increased proportions of CLA at the sn-2 position of TAG from SC adipose tissue, suggesting that there were tissue-specific dietary effects and possible age-related effects on the mode of FA incorporation into TAG. Safflower oil supplementation in the diet had no effect on the CLA content of PL from diaphragm, rib muscle, and SC adipose tissue, suggesting that CLA was preferentially incorporated into the TAG of these tissues.  相似文献   

19.
In the search for non-traditional seed oils, physicochemical parameters, fatty acid (FA) and triacylglycerol (TAG) profiles for five Botswana seed oils, obtained by Soxhlet extraction, were determined. GC–MS and 1H-NMR analyses showed the FA profiles for mkukubuyo, Sterculia africana, and manketti, Ricinodendron rautanenii, seed oils dominated by linoleic and oleic acids, 26.1, 16.7 and 51.9, 24.4%, respectively, with S. africana containing significant amounts of cyclic FAs (19.9%). Mokolwane, Hyphaene petersiana, seed oil was typically lauric; 12:0 and 14:0 acids were 25.9 and 13.4%, respectively. Morama, Tylosema esculentum, seed oil resembled olive oil; 18:1 (47.3%) and 18:2 (23.4%) acids dominated. Moretologa-kgomo, Ximenia caffra, seed oil had 45.8% of 18:1 FA, plus significant amounts of very long chain FAs: 26:1 (5.8%), 28:1 (13.9%), 30:1 (3.9%), and acetylenic acids, 9a-18:1 (1.5%) and 9a, 11t-18:2 (16.0%). TAG classes and regiochemistry were determined with ESI-FTICR-MS, and 13C-NMR spectra, respectively. Morama showed seven major TAG classes with C54:4 and C54:3 dominating; mokolwane had 16 major classes with C32:0, C38:0 and C42:2 dominating; manketti had 11 major classes with C54:7, C54:6 and C54:4 dominating; mkukubuyo had 12 major classes with C52:4, C52:3 and C54:4 dominating; moretologa-kgomo had 30 major TAG classes with C64:5, C64:3 and C62:3 dominating. Saturated FAs were generally distributed over the sn-1(3) position for morama, manketti, and moretologa-kgomo but at the sn-2 position for mokolwane and mkukubuyo. These findings indicate that morama and manketti seed oils can be developed for food uses, whilst moretologa-kgomo and mkukubuyo seed oils only for nonfood uses.  相似文献   

20.
The effects of microwave heating on some components of extra-virgin olive oil were studied. Traditional parameters, including free acidity, peroxide value and ultraviolet absorbance values at 232 and 268 nm, were determined in six extra-virgin olive oil samples before and after the microwave treatment. Significant differences (P<0.01) were detected for free acidity, peroxide, and ultraviolet absorbance at 268 nm; also, the absorbances at 232 nm showed significant differences (P<0.05) between treated and untreated samples. The glycerolic fractions, triacylglycerols (TAG), diacylglycerols (DAG), and monoacylglycerols (MAG), were isolated by thin-layer chromatography. The respective percentage fatty acid (FA) composition and percentage amount were obtained by high-resolution gas chromatography with an internal standard. For the most abundant TAG fraction, the stereospecific analysis was carried out to obtain the FA percentage compositions of the three sn-positions. Small but significant modifications were observed regarding the decrease in the TAG percentage and increases in the DAG and MAG percentage amounts. No significant changes were observed for the FA compositions of TAG, DAG, and MAG fractions before and after the treatment. Nevertheless, the results of TAG stereospecific analysis showed losses of unsaturated FA in all sn-positions. Higher percentage changes in the sn-1- than in sn-2-position of TAG were observed. Regarding the volatile fraction, different profiles were obtained after the treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号