首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new, rapid Fourier transform near infrared (FT‐NIR) spectroscopic procedure is described to screen for the authenticity of extra virgin olive oils (EVOO) and to determine the kind and amount of an adulterant in EVOO. To screen EVOO, a partial least squares (PLS1) calibration model was developed to estimate a newly created FT‐NIR index based mainly on the relative intensities of two unique carbonyl overtone absorptions in the FT‐NIR spectra of EVOO and other mixtures attributed to volatile (5280 cm?1) and non‐volatile (5180 cm?1) components. Spectra were also used to predict the fatty acid (FA) composition of EVOO or samples spiked with an adulterant using previously developed PLS1 calibration models. Some adulterated mixtures could be identified provided the FA profile was sufficiently different from those of EVOO. To identify the type and determine the quantity of an adulterant, gravimetric mixtures were prepared by spiking EVOO with different concentrations of each adulterant. Based on FT‐NIR spectra, four PLS1 calibration models were developed for four specific groups of adulterants, each with a characteristic FA composition. Using these different PLS1 calibration models for prediction, plots of predicted vs. gravimetric concentrations of an adulterant in EVOO yielded linear regression functions with four unique sets of slopes, one for each group of adulterants. Four corresponding slope rules were defined that allowed for the determination of the nature and concentration of an adulterant in EVOO products by applying these four calibration models. The standard addition technique was used for confirmation.  相似文献   

2.
The European Parliament identifies virgin olive oil (VOO) as one of the foods which are often subject to fraudulent activities. Possibilities of adulteration are the application of illegal soft deodorization of extra virgin olive oil (EVOO) or the commercialization of blends of EVOO with soft‐deodorized EVOO or refined vegetable oils. Despite the search for possibilities to prove the illegal soft deodorization of EVOO or the addition of cheaper vegetable oils to EVOO, suitable methods are still missing. Therefore, the aim of the study is to develop a new analytical and statistical approach addressing detection of mild deodorization or addition of refined foreign oils. For this purpose, VOOs are treated in lab‐scale for 1 h up to 28 days at different temperatures (20, 50, 60, 80,100, 110, and 170 °C) in order to simulate and study the effect of heat treatment on known analytical parameters by near infrared spectroscopy (NIR). A logit regression model enabling the calculation of the probability for a heat treatment is developed. This new methodology allows detecting both soft deodorized olive oils and blends of EVOO with cheaper full refined vegetable oils. Adding only 10% of full refined oil could be detected in extra VOO. Practical Applications: NIR methods combined with chemometrics have become one of the most attractive analytical tools to control quality of food. It is a simple, precise, and rapid method. All relevant analytical parameters of oxidative and thermal fat degradation can be determined in a single run and be used to detect adulterated virgin olive oils (VOOs). The use of a simple equation developed from the logistic regression using peroxide value, K‐values, p‐anisidine value, pyropheophytine, 1,2‐diacylglycerols, total polar compounds and monomeric oxidized triacylglycerols, and other well‐known parameters allows to detect mild deodorized olive oils or also blends of VOO with soft‐deodorized ones or the addition of low amounts of foreign vegetable oils. This technique has potential to be used as a screening method for the detection of adulterated olive oils using both the traditional laboratory methods and the corresponding NIR‐methods.  相似文献   

3.
A total of 287 olive lots and 161 olive oil samples were analyzed for fat content, moisture and free acidity, using a Fourier transform near‐infrared (FT‐NIR) instrument located in an industrial mill. Samples having a wide range of both reference values and olive lot sizes (from <0.5 to >4 t) were collected at three industrial mill plants, located in the same Italian region, which utilize different technological equipment for virgin olive oil production. Olive paste spectra were acquired in diffuse reflectance, while oil samples were measured in transmission. Calibration models for oil content and moisture of olives as well as free acidity of virgin olive oils were developed using partial least squares (PLS) regression, first derivative and straight line subtraction. Results of calibration and validation of the PLS models selected were good. The PLS results indicate good similarity between data obtained from FT‐NIR and reference laboratory methods, allowing a rapid and less expensive screening analysis. Unfortunately, the correlation between the oil yield values recorded for all olive lots at the industrial mills and the oil content predicted by FT‐NIR was not satisfactory (R2 = 0.605).  相似文献   

4.
The authenticity of high value edible fats and oils including extra virgin olive oil (EVOO) is an emerging issue, currently. The potential employment of Fourier transform infrared (FTIR) spectroscopy in combination with chemometrics of multivariate calibration and discriminant analysis has been exploited for rapid authentication of EVOO from canola oil (Ca‐O). The optimization of two calibration models of partial least square (PLS) and principle component regression was performed in order to quantify the level of Ca‐O in EVOO. The chemometrics of discriminant analysis (DA) was used for making the classification between pure EVOO and EVOO adulterated with Ca‐O. The individual oils and their blends were scanned on good contact with ZnSe crystals in horizontal attenuated total reflectance, as a sampling technique. The wavenumbers of 3,028–2,985 and 1,200–987 cm?1 were used for quantification and classification of EVOO adulterated with Ca‐O. The results showed that PLS with normal FTIR spectra was well suited for quantitative analysis of Ca‐O with a value of the coefficient of determination (R2) > 0.99. The error, expressed as root mean square error of calibration obtained was relatively low, i.e. 0.108 % (v/v). DA can make the classification between pure EVOO and that adulterated with Ca‐O with one misclassified reported.  相似文献   

5.
Adulteration of extra virgin olive oil (EVOO) by addition of other vegetable oils or lower-grade olive oils is a common problem of the oil market worldwide. Therefore, we developed a fast protocol for detection of EVOO adulteration by mass spectrometry fingerprinting of triacylglycerol (TAG) profiles based on MALDI-TOF/MS. For that purpose, EVOO TAG profiles were compared with those of edible sunflower oil and olive oil composed of refined olive oil and virgin olive oils. Adulteration of EVOO was simulated by addition of sunflower and mixture of refined olive oil and virgin olive oils at 1, 10 and 20% w/w. Results of mass spectrometry TAG profiling were compared with routinely assessed K values for identification of adulteration. MALDI-TOF/MS technology coupled with statistical analysis was proven as useful for detection of adulteration in EVOO at a rate down to 1%. In contrast, standard spectrophotometric methods failed to identify minor adulterations. In addition, the ability of MALDI-TOF/MS in detection of adulteration was tested on EVOO samples from different geographical regions. Results demonstrated that MALDI-TOF/MS technology coupled with statistical analysis is able to distinguish adulterated oils from other EVOO.  相似文献   

6.
The composition of olive oils may vary depending on environmental and technological factors. Fatty acid profiles and Fourier‐transform infrared (FT‐IR) spectroscopy data in combination with chemometric methods were used to classify extra‐virgin olive oils according to geographical origin and harvest year. Oils were obtained from 30 different areas of northern and southern parts of the Aegean Region of Turkey for two consecutive harvest years. Fatty acid composition data analyzed with principal component analysis was more successful in distinguishing northern olive oil samples from southern samples compared to spectral data. Both methods have the ability to differentiate olive oil samples with respect to harvest year. Partial least squares (PLS) analysis was also applied to detect a correlation between fatty acid profile and spectral data. Correlation coefficients (R2) of a calibration set for stearic, oleic, linoleic, arachidic and linolenic acids were determined as 0.83, 0.97, 0.97, 0.83 and 0.69, respectively. Fatty acid profiles were very effective in classification of oils with respect to geographic origin and harvest year. On the other hand, FT‐IR spectra in combination with PLS could be a useful and rapid tool for the determination of some of the fatty acids of olive oils.  相似文献   

7.
Fourier transform infrared (FT‐IR) spectroscopy in combination with chemometric techniques has become a useful tool for authenticity determination of extra‐virgin olive oils. Spectroscopic analysis of monovarietal extra‐virgin olive oils obtained from three different olive cultivars (Erkence, Ayvalik and Nizip) and mixtures (Erkence‐Nizip and Ayvalik‐Nizip) of monovarietal olive oils was performed with an FT‐IR spectrometer equipped with a ZnSe attenuated total reflection sample accessory and a deuterated tri‐glycine sulfate detector. Using spectral data, principal component analysis successfully classified each cultivar and differentiated the mixtures from pure monovarietal oils. Quantification of two different monovarietal oil mixtures (2–20%) is achieved using partial least square (PLS) regression models. Correlation coefficients (R2) of the proposed PLS regression models are 0.94 and 0.96 for the Erkence‐Nizip and Ayvalik‐Nizip mixtures, respectively. Cross‐validation was applied to check the goodness of fit for the PLS regression models, and R2 of the cross‐validation was determined as 0.84 and 0.91, respectively, for the two mixtures.  相似文献   

8.
A rapid Fourier transformed infrared (FTIR) attenuated total reflectance (ATR) spectroscopic method coupled with partial least squares (PLS), was developed to estimate the oxidation degree of extra virgin olive oil (EVOO). The reference values of EVOO oxidation for the FTIR calibration were obtained by the specific absorptions at 232 and 270 nm, due to the presence of conjugated diene (CD) and conjugated triene (CT) groups, as monitored by the UV spectrophotometric determination. Specific washing procedures were applied to the EVOO to obtain EVOOP and EVOOTP samples, without phenolic compounds and without tocopherols and phenols, respectively. To obtain different oxidation degrees covering wide CD and CT ranges, EVOO, EVOOP, and EVOOTP samples were subjected to a forced oxidation at 60°C for 20 days and aliquots of the oils were daily analyzed. Regression of the FTIR/PLS‐predicted CD and CT of individual oxidized oils EVOO, EVOOP, EVOOTP, and all combined oils (EVOOALL) against UV–Visible reference values demonstrated the good quality of the models in terms of R2 and RMSECV values. The results of the study indicated that a strong correlation existed between FTIR and UV–Visible peak intensities. Practical applications: The FTIR‐ATR method coupled with PLS elaboration was developed and applied to predict the oxidation degree of EVOO samples with considerable advantages in terms of simplicity, analysis time, and solvent consumption as compared to the standard method. Moreover, suitable adjustments of the equipment could permit a rapid control at‐line in oil sector.  相似文献   

9.
Although large amounts of olive oil are produced in Turkey, not much information on its chemical composition is available in the literature to date. The aim of this study was to evaluate the chemical composition of commercial olive oils produced from the Ayvalik olive cultivar in Canakkale, Turkey. Five different samples corresponding to the olive oil categories of extra virgin (conventional, extra virgin olive oil (EVOO), and organic extra virgin olive oil (OGOO) production), virgin olive oil (OO-1), ordinary virgin olive oil (OO-2) and refined olive oil (RFOO) were evaluated. Olive oils were collected from two consecutive production years. According to the free fatty acids, the absorbance values (K232 and K270), and peroxide values of all the samples conformed to the European standards for olive oil. The level of oleic acid was in the range of 68–73%; while the linoleic acid content was significantly lower in the refined olive oils. The tocopherol and polyphenol content was in the lower range of some European olive oils. However, pinoresinol was a major phenolic compound (5–77 mg/kg depending on the oil category). Its content was markedly higher than in many other oils, which would be a useful finding for olive oil authentication purposes.  相似文献   

10.
Determination of adulteration and authenticity of extra virgin olive oil (EVOO) was investigated by means of infrared spectroscopy and chemometric methods. The study was focused on the detection and quantification of extra virgin olive oil adulteration by soybean (SB) and sunflower (SF) oils using FT-IR spectroscopy based on the use of PLS modeling and variable importance of projection (VIP) scores. A PLS model, using orthogonal signal correction and mean centering data pretreatments, and VIP scores variable preselection, was able to predict the concentration of sunflower and soybean oil adulterants in the 1–24 % weight ratio range with relative prediction errors lower than 3 % (w/w), for external validation samples. Moreover, the PLS-DA (discriminant analysis) model using the same preselected wavelengths was able to explain 99.9 % of variance and to predict with 100 % accuracy both classes of adulteration (EVOO–SB and EVOO–SF) in the external validation.  相似文献   

11.
We aimed at investigating oxidative stability and changes in fatty acid and tocopherol composition of extra virgin olive oil (EVOO) in comparison with refined seed oils during short‐term deep‐frying of French fries, and changes in the composition of the French fries deep‐fried in EVOO. EVOO samples from Spain, Brazil, and Portugal, and refined seed oils of soybean and sunflower were studied. Oil samples were used for deep‐frying of French fries at 180 °C, for up to 75 min of successive frying. Tocopherol and fatty acid composition were determined in fresh and spent vegetable oils. Tocopherol, fatty acid, and volatile composition (by SPME–GC–MS) were also determined in French fries deep‐fried in EVOO. Oil oxidation was monitored by peroxide, acid, and p‐anisidine values, and by Rancimat after deep‐frying. Differential scanning calorimetry (DSC) analysis was used as a proxy of the quality of the spent oils. EVOOs presented the lowest degree of oleic and linoleic acids losses, low formation of free fatty acids and carbonyl compounds, and were highly stable after deep‐frying. In addition, oleic acid, tocopherols, and flavor compounds were transferred from EVOO into the French fries. In conclusion, EVOOs were more stable than refined seed oils during short‐term deep‐frying of French fries and also contributed to enhance the nutritional value, and possibly improve the flavor, of the fries prepared in EVOO.  相似文献   

12.
Economically motivated adulteration (EMA) of extra virgin olive oils (EVOO) has been a worldwide problem and a concern for government regulators for a long time. The US Food and Drug Administration (FDA) is mandated to protect the US public against intentional adulteration of foods and has jurisdiction over deceptive label declarations. To detect EMA of olive oil and address food safety vulnerabilities, we used a previously developed rapid screening methodology to authenticate EVOO. For the first time, a recently developed FT-NIR spectroscopic methodology in conjunction with partial least squares analysis was applied to commercial products labeled EVOO purchased in College Park, MD, USA to rapidly predict whether they are authentic, potentially mixed with refined olive oil (RO) or other vegetable oil(s), or are of lower quality. Of the 88 commercial products labeled EVOO that were assessed according to published specified ranges, 33 (37.5%) satisfied the three published FT-NIR requirements identified for authentic EVOO products which included the purity test. This test was based on limits established for the contents of three potential adulterants, oils high in linoleic acid (OH-LNA), oils high in oleic acid (OH-OLA), palm olein (PO), and/or RO. The remaining 55 samples (62.5%) did not meet one or more of the criteria established for authentic EVOO. The breakdown of the 55 products was EVOO potentially mixed with OH-LNA (25.5%), OH-OLA (10.9%), PO (5.4%), RO (25.5%), or a combination of any of these four (32.7%). If assessments had been based strictly on whether the fatty acid composition was within the established ranges set by the International Olive Council (IOC), less than 10% would have been identified as non-EVOO. These findings are significant not only because they were consistent with previously published data based on the results of two sensory panels that were accredited by IOC but more importantly each measurement/analysis was accomplished in less than 5 min.  相似文献   

13.
The aim of this study was to classify Turkish commercial extra virgin olive oil (EVOO) samples according to geographical origins by using surface acoustic wave sensing electronic nose (zNose?) and machine vision system (MVS) analyses in combination with chemometric approaches. EVOO samples obtained from north and south Aegean region were used in the study. The data analyses were performed with principal component analysis class models, partial least squares‐discriminant analysis (PLS‐DA) and hierarchical cluster analysis (HCA). Based on the zNose? analysis, it was found that EVOO aroma profiles could be discriminated successfully according to geographical origin of the samples with the aid of the PLS‐DA method. Color analysis was conducted as an additional sensory quality parameter that is preferred by the consumers. The results of HCA and PLS‐DA methods demonstrated that color measurement alone was not an effective discriminative factor for classification of EVOO. However, PLS‐DA and HCA methods provided clear differentiation among the EVOO samples in terms of electronic nose and color measurements. This study is significant from the point of evaluating the potential of zNose? in combination with MVS as a rapid method for the classification of geographically different EVOO produced in industry.  相似文献   

14.
Miniaturization of analytical technology has paved the way for in‐situ screening of foods. In the current study, the spectral features of olive oils are examined by handheld near‐infrared spectroscopy to explore the technology's capabilities to distinguish extra virgin olive oil (EVOO) from lower grade oils. Eighty EVOO, forty refined olive oil (ROO), and ten pomace olive oil (POO) samples are analysed for their spectral and compositional features. The latter included analysis of the fatty acids (FAs), the chlorophylls and carotenoids, chromatic coordinates and moisture contents. The 1350–1570 nm wavelength range appeared most suitable for distinction of the oils. One‐class classification models with three different classifiers are subsequently estimated using this range, and their quantitative performance is assessed from probabilistic data. Soft independent modeling of class analogies models appears to predict the identity of the oils with a high success rate. Compared to the other oils, POO comprises a significantly higher and lower proportion of polyunsaturated and monounsaturated FAs, respectively. Higher contents of chlorophylls, carotenoids, and moisture are noted for EVOO. The relevant spectral information for distinction of the oils correlates strongly with the degree of unsaturation of the oils as well as their levels of chlorophylls, carotenoids, and moisture. Practical Applications: The findings of this study demonstrate that the handheld NIRS technique is promising for future rapid screening of olive oil grades. The statistical methods used and the robust validation procedure will help potential users to select the optimal strategy for multivariate data analysis. In addition, the exploration of correlations with compositional characteristics provides insight into the handheld NIRS working mechanism in regard to EVOO authentication.  相似文献   

15.
Activity of the polyphenol oxidase (PPO) from eggplant fruit (Solanum melongena L.) on phenolic compounds of an extra virgin olive oil (EVOO) was studied. In standardized reaction solutions, the eggplant PPO, isolated in the laboratory, depleted completely chlorogenic and caffeic acids, oleuropein, and verbascoside, while the levels of hydroxytyrosol reduced by half. Conversely, no activity of the PPO was observed on the gallic and protocatechuic acids nor on mono‐phenols, such as tyrosol and the p‐coumaric, o‐coumaric, and ferulic acids. PPO activity on phenols extracted from eggplant fruit and EVOO confirmed the enzyme substrate specificity and caused a significant decrease in the measure of total phenols and o‐diphenols. Similarly, PPO crude extract caused a significant decrease of polyphenols directly in the EVOO. Moreover, maximum degradation of EVOO polyphenols was observed when olive oil was homogenized with eggplant fruit pulp to form a cream‐like purée. In fact, immediately after the preparation, total phenols and o‐diphenols of the olive oil recovered from the eggplant‐oil purée were decreased by ~80% and 100% compared to those of the initial EVOO. As a consequence, the oxidative stability of the recovered oil was ~60% lower than that of the initial EVOO. In conclusion, in the preparation of vegetable preserves, a residual activity of phenol oxidase may adversely affect the quality and shelf life of the extra virgin olive oil used as covering.  相似文献   

16.
The effect of cultivar and ripeness stage on the potential nutritional value of monovarietal extra virgin olive oils (MEVOOs) obtained from Cordovil, Carrasquinha, Verdeal, and Negrinha do Freixo cultivars was investigated. MEVOOs produced were characterized by high oleic acid (72–83%), tocopherol (182–530 mg/kg), and phenolic compounds (326–1110 mg/kg) content and by a similar polyphenolic profile. 1‐Penten‐3‐one was found to be the compound with the highest contribution for the aroma of the four MEVOO, related to bitter, pungent, and leaf attributes. MEVOO from Verdeal cultivar showed the best performance in terms of the composition: the highest yield of oil, the highest content of oleic acid, high tocopherol, polyphenol and sterol content, and the lowest content of linoleic acid. These characteristics give to these MEVOO not only a great oxidative stability but also interesting properties from the health point of view. MEVOO obtained with fruits at the maturity index of around 4 were in general richer in beneficial minor compounds. MEVOO produced were discriminated by variety and ripeness stage, using a stepwise linear discriminant analysis. This discrimination will in the future enable the prevention of adulteration of these monovarietal olive oils with specific nutritional composition with other olive oils. Practical implications: High‐quality MEVOOs have recently been introduced in the market, which for growers is a practical way to differentiate and increase the commercial value of extra virgin olive oil. The quantification of major and minor olive oil compounds in monovarietal olive oils represents an objective way of predicting the sensory characteristics, stability, and potential health benefits of the oils, as well as preventing their adulteration with other olive oils. This study will help in the selection of olive varieties during the maintenance or development of new olive orchards and also to select optimum harvest period for these varieties, in order to obtain MEVOOs with the maximum quality and health benefits for consumers.  相似文献   

17.
During domestic usage, olive oil bottle manipulation may lead to a quality decrease due to agitation and oxygenation. Therefore, assessing the domestic consumption time period during which the initial quality grade is retained may allow including this information as a recommendation, ensuring olive oil consumers’ satisfaction. Temporal changes of physicochemical, chemical, and sensory parameters of extra‐virgin olive oils (EVOO) were monitored during 1‐month simulated house‐use conditions. It was observed that K232 (R‐Pearson ≥+0.81) and ΔK increased resulting in a significant olive oil quality decrease from EVOO (during the initial 21 days of simulated usage) to lampante olive oil (after 28 days of simulated usage) as well as the appearance of rancid sensation. As lampante olive oils cannot be commercialized, it is pertinent to establish olive oil shelf life under usual home‐use conditions. Principal component analysis allowed grouping the olive oils according to home‐use time period and how bottles are stored after their first opening, showing that the overall olive oil physicochemical and sensory characteristics changed with the domestic‐use time period. Finally, a potentiometric electronic tongue coupled with linear discriminant analysis was used to discriminate olive oils according to the domestic‐use time period (leave‐one‐out cross‐validation sensitivities ≥95%). Thus, this device could be used to indirectly assess the quality of the remaining bottled olive oil by establishing for how long an olive oil bottle has been used under domestic conditions.  相似文献   

18.
The Brazilian olive oil production has been growing in recent decades and largest plantations are on two different zones, from Serra da Mantiqueira (states of Minas Gerais and São Paulo) and Campanha Gaúcha (state of Rio Grande do Sul). The total planted area, in 2022, reached approximately 6500 hectares. The aim of the present study was to characterize the sensory and analytical parameters of extra virgin olive oils (EVOO) from Southwestern (Serra da Mantiqueira) and Southern (Campanha Gaúcha) Brazil regions. Twenty-two EVOO samples were obtained from different cultivars of unlike regions. Quality parameters, oxidative stability, phenolic compounds ortho-diphenols and fatty acids were analyzed and relationships with olive variety or region. From the chemical perspective, the EVOO exhibited all parameters within the necessary to be qualified as extra virgin, according to international standard definitions. All samples showed a good quality of sensory perceptions and a high level of polyphenols, which are varied among samples but was more intense in Campanha Gaúcha olive oils.  相似文献   

19.
The measurement of FA profile, polar material, oligomers, oxidized triacylglycerols (OTG), total polyphenols, and cyclic FA monomers (CFAM) was used to evaluate the alteration of a high-oleic sunflower oil (HOSO) and an extra virgin olive oil (EVOO) used in 75 domestic fryings of fresh potatoes with frequent replenishment (FR) of unused oil. CFAM were absent in the unused EVOO but appeared in small amounts in the unused HOSO. Although polar material, oligomers, OTG, and CTAM contents increased and linoleic acid and polyphenols content decreased in both oils during repeated frying, the changes produced should be considered small and related to the use of very stable oils and FR. Throughout the 75 fryings, the total CFAM concentration was higher in HOSO than in EVOO. OTG increased more quickly in EVOO, whereas oligomers increased more quickly in HOSO. Polar material and oligomer content appear significantly correlated (r=0.9678 and r=0.9739, respectively; for both, P<0.001) with the CFAM content. A 25% polar material and 12% oligomer content would correspond to about 1 mg·kg−1 oil of CFAM. Data suggest that both oils, particularly EVOO, perform very well in frying, with a low production of oligomers, polar materials, and CFAM.  相似文献   

20.
A method involving reversed-phase high-performance liquid chromatography with amperometric detection has been developed for the analysis of tocopherols and tocotrienols in vegetable oils. The sample preparation avoids saponification. Recoveries of α-tocotrienol and γ-tocotrienol in extra virgin olive oil were 97.0 and 102.0%, respectively. No tocotrienols were detected in olive, hazelnut, sunflower, and soybean oils, whether virgin or refined. However, relatively high levels of tocotrienols were found in palm and grapeseed oils. This method could detect small quantities (1–2%) of palm and grapeseed oils in olive oil or in any tocotrienol-free vegetable oil and might, therefore, help assess authenticity of vegetable oils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号