共查询到3条相似文献,搜索用时 0 毫秒
1.
Synthesis of a Series of Anionic Surfactants Derived from NP and their Properties as Emulsifiers for Reducing Viscosity of Highly Viscous Oil via Formation of O/W Emulsions 下载免费PDF全文
Lei Bao Hanwei Wang Yongbin Wu Xingmin Li Weihong Qiao 《Journal of surfactants and detergents》2016,19(5):979-987
A series of alkyl phenol polyoxyethylene glycidyl ether (NP-n-O) and alkyl phenol polyoxyethylene ether hydroxypropyl sulfonate (NP-n-S) surfactants was synthesized to explore emulsification viscosity reduction. The optimum sulfonation conditions were obtained through orthogonal experiments, the ratio of alkyl phenol polyoxyethylene glycidyl ether and sodium bisulfite 1:1.5, 100 °C, and 6 h. The effects of concentrations of the synthesized surfactants, pH values, emulsifying temperature (40 and 60 °C) and water content on emulsification viscosity reduction and the stability of the emulsion to Venezuela’s Orinoco heavy oil were investigated. The water diversion ratio of emulsion at the reservoir temperature (55 °C) in 30 days was taken as an index, the results show that under the conditions of a temperature of 40 °C, an oil/water ratio of 7:3 and a surfactant NP-4-S concentration of 0.5 %, emulsions can be formed with a viscosity reduction rate reaching up to 99.69 % and with a water diversion ratio in 30 days reaching 9.38 %; while at 60 °C and an oil/water ratio of 7:3, at an NP-4-S concentration of 1 %, the viscosity reduction rate can reach 99.55 % and water diversion ratio is merely 4.23 % in 30 days. The mixture of NP-n-S, xanthan gum and cocamidopropyl dimethylamine oxide (CAO-30) at suitable concentration can greatly improve the emulsification viscosity reduction and emulsion stability, which gives an emulsion viscosity rate of over 98 %. Moreover, the emulsion can be stable for at least 30 days without water emerging. 相似文献
2.
Minggui Chen Lijuan Luo Xingqi Hu Jitao Yang 《Journal of surfactants and detergents》2013,16(3):327-332
A series of carboxylate gemini surfactants, which contain two hydrocarbon chains linked by amide groups, two carboxylate groups, a flexible alkane spacer were synthesized by three-step reactions and named alkylidene–bis-(N,N′-dodecyl-carboxypropylamides) (2C12H25CnAm; n = 2, 3, 4, 6, 8 is the number of methylene groups of the spacer), their structures were confirmed by FTIR,1H NMR, and LC–MS/TOF, and their purity checked by HPLC. The micellar properties with increasing spacer chain length of these gemini surfactants were determined by surface tension methods. The critical micelle concentration (CMC) varies slightly with spacer chain length; surface tension at CMC(γCMC), the tendency of micellization versus adsorption, CMC/C20, the minimum area per surfactant molecule at the air/solution interface (ACMC), all decrease with increasing spacer chain length; surface reduction efficiency, pC20, the surface excess at the air/solution interface (ГCMC) increase with increasing spacer chain length. The results probably indicate that increasing spacer chain length of these carboxylate gemini surfactants will increase spacer incorporation into the double hydrophobic chain. 相似文献
3.
Low-salinity surfactant (LSS) flooding is a combined enhanced oil recovery (EOR) technique that increases oil recovery (OR) by altering the rock surface wettability and reducing oil–water interfacial tension (IFT). In this study, optimum concentrations of several types of salt in distilled water were obtained on the basis of IFT experiments for the preparation of low-salinity water (LSW). Then, a new oil-based natural surfactant (Gemini surfactant, GS) was combined with LSW to investigate their effects on IFT, wettability, and OR. Experimental results showed that LSW is capable of reducing IFT and contact angle, but the synergy of GS and the active ions Mg2+, Ca2+, and SO42− in LSW was more effective on IFT reduction and wettability alteration. The combination of 1000 ppm MgSO4 and 3000 ppm GS led to a decrease in contact angle from 134.82° to 36.98° (oil-wet to water-wet). Based on core flooding tests, LSW injection can increase OR up to 71.46% (for LSW with 1000 ppm MgSO4), while the combination of GS and LSW, as LSS flooding, can improve OR up to 84.23% (for LSS with 1000 ppm MgSO4 and 3000 ppm GS). Therefore GS has great potential to be used as a surfactant for EOR. 相似文献