首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Soy protein adhesives have great potential as sustainable eco-friendly adhesives. However, low adhesion under wet conditions hinders its applications. The objective of this research was to enhance the water resistance of soy protein adhesives. The focus of this research was to understand the effect of protein to lignin ratio and lignin particle size i.e. large (35.66 μm), medium (19.13 μm), and small (10.26 μm) on the adhesion performance of soy protein adhesives as well as to characterize its rheological and thermal properties. Results showed that the lignin particle size and the protein to lignin ratio greatly affected the adhesion performance of soy protein adhesives. The addition of lignin slightly increased the viscosity, spreadability, and thermostability of soy protein adhesives. The wet strength of soy protein adhesives increased as lignin particle size decreased. Soy protein mixed with small size lignin at a protein to lignin ratio of 10:2 (w/w) at 12% concentration presented the lowest contact angle and the highest wet adhesion strength of 4.66 MPa., which is 53.3% higher than that of 10% pure soy protein adhesive. The improvements in adhesion performance and physicochemical properties of soy protein adhesives by lignin were ascribed to the interactions between protein and lignin. Lignin with smaller particle size increased the wet shear strength of soy protein adhesives because a larger surface area of lignin was available to interact with the protein.  相似文献   

2.
Soy protein adhesives with a high solid content (28–39 %) were extracted from soy flour slurry modified with sodium bisulfite (NaHSO3) at different concentrations. 11S‐dominated soy protein fractions (SP 5.4) and 7S‐dominated soy protein fractions (SP 4.5) were precipitated at pH 5.4 and pH 4.5, respectively. The objective of this work was to study the effects of NaHSO3 on adhesion and physicochemical properties of soy protein. The adhesion performance of NaHSO3‐modified SP 4.5 was better than SP 5.4; the wet strength of these two fractions was from 2.5 to 3.2 MPa compared with 1.6 MPa of control soy protein isolate. SDS‐PAGE results revealed the reducing effects of NaHSO3 on soy protein. The isoelectric pH of soy protein decreased as NaHSO3 increased due to the induced extra negative charges (RS‐SO3?) on the protein surface. The rheological properties of soy protein adhesives were improved significantly. Unmodified samples SP 5.4 and SP 4.5 had clay‐like properties and extremely high viscosity, respectively; with 2–8 g/L NaHSO3 modification, both SP 5.4 and SP 4.5 had a viscous cohesive phase with good flowability. Overall, NaHSO3‐modified soy protein adhesives in our study have many advantages over the traditional soy protein isolate adhesive such as better adhesion performance, higher solid content but with good flowability and longer shelf life.  相似文献   

3.
In this study, the synthesis and characterization of acrylic polymer/montmorillonite (MMT) clay nanocomposite pressure sensitive adhesives (PSA) are presented. Different types and amounts of modified and unmodified montmorillonite clays were dispersed in ethyl acrylate (EA)/2-ethylhexyl acrylate (2-EHA) monomer mixture, which was then polymerized using a suspension polymerization technique. Polymerization was monitored in-line using attenuated total reflectance-fourier transform infrared (ATR-FTIR) spectroscopy. The adhesion properties of the synthesized nanocomposite materials were determined using standard measurements of tack, peel and shear strength. Viscoelastic properties of dried adhesive films were analyzed using dynamic mechanical analysis (DMA). The results showed that the kinetics of suspension polymerization was independent of the addition of MMT clays. On the other hand, adhesive properties were strongly influenced by the type and the amount of MMT clay added. While peel strength and tack gradually decreased with higher amount of modified MMT clay, a substantial increase in shear strength was determined with a maximal value at 1 wt% of added MMT clay. Moderate influence on tack, peel and shear strength was observed when the unmodified type of MMT clay was used. DMA analysis showed an increase in storage modulus (G′) for adhesives synthesized with MMT clay addition, but no significant differences were determined between particular types of MMT clays. A decrease in tan δ value for adhesives with 1 wt% of added MMT clay was observed, which also concurs with higher shear strength and implies to the improved cohesion of adhesive.  相似文献   

4.
The desire to prepare a lower-cost soy-based adhesive has led to an interest in using the abundant and inexpensive soy flour (SF) as a substitute for expensive soy protein isolates (SPI) in wood adhesives. However, the weakness of this adhesive is poor water-resistance and bonding strength due to a low protein content, which limits its application in the wood industry. The objective of this research was to provide a simple and useful approach for improving the adhesion performance of SF-based adhesive by introducing a small addition of melamine-urea-formaldehyde (MUF) resin into the cured system. The optimum addition level of MUF resin, as well as the adhesion performance and conformation change of SF-based adhesive, were investigated. The analytical results indicated that the co-condensed methylene bridges were formed through the reaction of methylol groups of MUF resin with soy units during the hot-press process. The addition of MUF resin, not only significantly decrease the viscosity of SF-based adhesive but also increase its water-resistance and wet shear strength value. The SF-based adhesive containing 20% MUF resin, is a relatively low-cost adhesive, has a reasonable viscosity, and moreover can pass the Chinese Industrial Standard requirement (0.7 MPa) for interior plywood panels.  相似文献   

5.
The impact of jet cooking on shear strength of soy-and-water adhesives was investigated to understand the higher shear strength of commercial soy protein isolates compared to soy flours. Soy flour-based wood adhesives are appealing because of their bio-based content, low formaldehyde emission, and low cost, but their commercial application is limited by low wet cohesive strength. Previous researchers proposed that the process of jet cooking (steam injection with high turbulence followed by rapid cooling) was responsible for the high (~3 MPa) wet shear strength of adhesives made with commercially produced soy protein isolate, using the ASTM D 7998 test. In this work, we show that jet cooking did dramatically increase the wet strength of laboratory-produced, native-state soy protein isolate from 0.6 to 3 MPa, a strength similar to many commercial isolates. Jet cooking was far less effective at developing wet strength of soy flours, but greatly increased the viscosity of virtually all our soy materials. We hypothesize that the benefits of jet cooking are primarily a result of nonequilibrium protein aggregation states because subsequent wet autoclaving of jet cooked soy proteins dramatically decreased wet strength. The dramatic differences in adhesive properties between commercial soy protein isolates and soy flours suggests that the common practice of using results obtained with commercial isolates to predict the performance of soy flour adhesives is inappropriate.  相似文献   

6.
Successful industrial applications of soy protein adhesives require high adhesion strength and low viscosity at high solid protein concentration. This study examined the effects of β-conglycinin (7S) and glycinin (11S) ratios on the physicochemical properties of soy protein adhesives. Soy protein adhesives with various 7S/11S ratios were extracted from soy flour slurry modified with sodium bisulfite using the acid precipitation method, which is based on the different solubilities of 7S and 11S globulins. Seven glycinin-rich soy protein fractions and six β-conglycinin-rich soy protein fractions were obtained. The external morphology of the samples changed from the viscous cohesive phase to the clay-like phase without cohesiveness. The viscous cohesive samples had good flowability and good water resistance with a wet adhesion strength of 2.0–2.8 MPa. They were stable for up to several months without phase separation at room temperature. Based on the results, we suggest that proper protein–protein interaction, hydration capacity (glycinin-rich soy protein fractions), and certain ratios of 7S and 11S (β-conglycinin rich soy protein fractions) in the soy protein sample are crucial to continuous protein phase formation. Hydrogen bonding, electrostatic forces, and hydrophobic interactions are involved in maintaining the protein viscous cohesive network, whereas disulfide bonds do not exert significant effects. This study describes a new way to investigate viscous cohesive soy protein systems with high solid protein content, thus alleviating the disadvantages of traditional methods for studying the adhesive properties of soy protein isolates, which tend to have poor water resistance, low solid contents, and short storage life.  相似文献   

7.
Soybean proteins have great potential as bio-based adhesives. The objectives of our study were to develop and characterize formaldehyde-free soybean wood adhesives with improved water resistance. Second-order response surface regression models were used to determine the effects of soy protein isolate concentration, sodium chloride, and pH on adhesive performance. All three variables affected both dry and wet strengths of bonded wood specimens. The optimum operation zone for preparing adhesives with improved water resistance is at a protein concentration of 28% and pH 5.5. Sodium chloride had negative effects on adhesive performance. Soy adhesives modified with 0.5% sodium chloride had dry strength, wet strength, and boiling strength of bonded specimens comparable to nonmodified soy adhesives. Rheological study indicated that soy adhesives exhibited shear thinning behavior. Adhesives modified with sodium chloride showed significantly lower viscosity and yield stress. Sodium chloride-modified soy adhesives formed small aggregates and had low storage moduli, suggesting reduced protein–protein interactions. These formaldehyde-free soy adhesives showed strong potential as alternatives to commercial formaldehyde-based wood adhesives.  相似文献   

8.
Numerous traditional adhesives have good adhesion in dry environments. However, non-environmental-friendliness and poor water resistance largely limit their practical applications. To prepare biocompatible adhesives with strong water resistance and adhesion strength, in this paper, catechol-functionalized cellulose-based adhesive polymers are synthesized by grafting N-(3,4-dihydroxyphenethyl)methacrylamide and methyl methacrylate onto cellulose chain through atom transfer radical polymerization (ATRP). The successful synthesis of the catechol-functionalized cellulose-based adhesive polymers is confirmed by FTIR and 1H NMR. The different characteristics of the adhesive polymers, such as thermal stability, swelling ratio, biocompatibility, and adhesion strength are investigated. Strong water resistance on various substrates is realized in underwater environment for the catechol-functionalized cellulose-based adhesive with addition of Fe3+. The adhesion strength and thermal stability are enhanced when the catechol content is increased. The adhesive with catechol content of 25.4% shows the adhesion strength of 0.45 MPa for iron substrate in underwater environment. In addition, the adhesive with addition of Fe3+ exhibits excellent adhesion in dry environment, with maximum adhesion strength of 3.50 MPa for iron substrate. The cell culture test shows that the adhesive polymers have excellent biocompatibility. The biocompatible adhesives with strong water resistance have potential application in electronic, wood, and building fields.  相似文献   

9.
This work was to correlate physical properties with adhesion properties of soy protein‐based adhesives. By building such a correlation, the adhesion properties can be predicted by measuring physical properties of soy protein‐based adhesives. In this context, three important physical properties, viscosity, tacky force, and water resistance, were selected to correlate with adhesion strength of enzymatically modified soy protein‐based adhesives (ESP). Response surface methodology, specifically central composite design, was used with three independent variables to prepare ESP: trypsin concentration (X1), incubation time (X2), and glutaraldehyde (GA) concentration (X3). The three physical properties measured were all greatly affected by our three independent variables with significance at the 95 % confidence level. The responses were then correlated with the adhesion properties of ESP. In conclusion, viscosity can be used to predict the dry adhesion strength of ESP based on the coefficient of determination (R2) of 0.8558. In addition, tacky force and water resistance can be used to represent wet adhesion strength of ESP based on R2 of 0.7082 and 0.6930, respectively (P < 0.05). This work preliminarily identified the significant physical properties that can predict the adhesion strength of the ESP system crosslinked with GA, but the results need to be further confirmed by another protein modification system to give a generic conclusion.  相似文献   

10.
This investigation characterized wettability and adhesive properties of the major soy protein components conglycinin (7S) and glycinin (11S) after urea modification. Modified 7S and 11S soy proteins were evaluated for gluing strength with pine, walnut, and cherry plywood and for wettability using a bubble shape analyzer. The results showed that different adhesives had varying degrees of wettability on the wood specimens. The 7S soy protein modified with urea had better wettability on cherry and walnut. The 11S soy protein modified with 1M urea had better wettability on pine. The 1M urea modification gave 11S soy protein the greatest bonding strength in all the wood specimens. The 3M urea modification gave 7S soy protein stronger adhesion on cherry and walnut than did 11S protein; but with pine, 11S soy protein had greater adhesion strength than 7S soy protein. Measurement of protein secondary structures indicated that the β-sheet played an important role in the adhesion strength of 3M urea-modified soy protein in cherry and walnut, while random coil was the major factor reducing adhesion strength of 7S soy protein modified with 1M urea.  相似文献   

11.
The incorporation of different amounts of montmorillonite (MMT) to soy protein concentrate (SPC) was used to improve the performance of the bio-nano-adhesive obtained. X-Ray diffraction, rheology, thermogravimetric analysis and scanning electronic microscopy were carried out to characterize the adhesives, and dry and wet strength was used to determine the adhesion strength. In the rheological measurement, the incorporation of up to 3 wt% of MMT did not modify the consistency index values of the SPC, while an increase in the flow consistency index for higher concentrations can be observed due to a strong interaction between MMT and the protein. Besides, the flow point values increase four times with respect to the value obtained for SPC alone. The decomposition temperature of SPC increases with the addition of MMT, which provides a tortuous pathway that obstructs the diffusion of volatile products out of the bio-nano-adhesive. Further addition beyond 5 wt% led to the formation of agglomerates, as verified by SEM. Moreover, the roughness of the fractured surface of the matrix can explain the decrease of the net adhesion of the nano-particles to the SPC suspensions.  相似文献   

12.
The hydrolyzed soy protein isolate (HSPI) was used to partially substitute urea to synthesis modified urea–formaldehyde (UF) adhesives via copolymerization process, in order to reduce the dependency on petroleum-based chemicals and mitigate possible environmental pollution. The soy protein isolate (SPI), HSPI, and modified UF adhesives were characterized by attenuated total reflection Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance (1H NMR), and thermo-gravimetric analysis (TGA). The bonding strength, adhesive properties, biodegradability, and micrographs of the UF and HSPI-modified UF after degradation were also measured. The results show that the SPI native structure is unfolded during the treatment with sodium hydroxide. The thermal stability of HSPI is better than SPI. HSPI can incorporate into the structure of cured UF adhesives with three different feeding methods. And the best bonding strength of modified UF adhesives is 1.31?MPa when HSPI is added at the first step. The formaldehyde emission of modified UF adhesives is lower compared with UF. The earlier the HSPI is added, the better the properties for modified UF adhesives can be obtained. The degradation rate of modified UF adhesives improved nearly two times compared to the UF after six months of degradation in biologically active soil. There are microorganisms adhering to the surface of modified UF from the SEM micrographs.  相似文献   

13.
双组分高强度环氧胶粘剂的研制   总被引:1,自引:0,他引:1  
根据车间内钢梁上吊车轨道安装底板与钢梁粘接的具体要求,研制了一种中温固化双组分环氧胶粘剂。探讨了E-51、E-39D和纳米碳酸钙用量对甲组分粘度的影响,测试了不同促进剂的胶粘剂凝胶时间并研究了粘接表面处理、中温固化时间对胶粘剂剪切强度的影响。结果表明,通过选用不同粘度的环氧树脂并添加纳米碳酸钙,控制甲组分粘度在8~20Pa.s,选用促进剂M3份,表面制备并采用偶联剂处理后,100℃下固化2h后,该胶铝-铝、钢-钢剪切强度可达45MPa和51MPa,实现了胶粘体系中温高强度快速固化。室温放置20h后钢-钢剪切强度为5.8MPa,可以安装加热设备以便后固化。  相似文献   

14.
Soy Protein Adhesive Blends with Synthetic Latex on Wood Veneer   总被引:1,自引:0,他引:1  
Environmental pollution has prompted an interest in and a need for bio-based wood adhesives. Modified soy protein has shown adhesion properties similar to those of formaldehyde based adhesives. The objective of this research was to investigate the compatibility of a modified soy protein (MSP) with six commercial synthetic latex adhesives (SLAs). Four different blending ratios of MSP and SLAs were studied. Adhesion; structural change; and rheological, thermal, and morphological properties of the MSP/SLAs blends were characterized. Dry adhesion strength of MSP, SLAs and their blends were all similar with 100% wood cohesive failure. Water resistance of all six SLAs was improved by blending with MSP in terms of the wet adhesion strength. The wet adhesion strength of MSP/PBG (40/60) blends was 6.416 MPa, as compared to 4.66 MPa of pure PBG (press bond glue, urea formaldehyde based resin). Viscosity of MSP/SLAs blends was reduced significantly and reached the lowest value at 40–60% MSP. Infrared spectra, thermal properties, and morphological images indicated that chemical reactions occurred between soy protein and PBG molecules. The MSP provided some functional groups, such as carboxylic (–COOH), hydroxyl (–OH) and amino groups (–NH2), that cross-linked with hydroxymethyl groups (–CH2–OH) of PBG, and also acted as an acidic catalyst for the self-polymerization of urea formaldehyde based resin.  相似文献   

15.
Rheological and adhesive properties of epoxy oligomer–montmorillonite (MMT) nanocomposites containing 2 and 5 wt% of natural and organomodified clay were studied. Ultrasound treatment of epoxy–clay systems was used for their homogenization. According to rheological data, ultrasound stirring allows the development of well-dispersed systems in the case of organomodified MMT. Sonication of composites with natural clay is inefficient and leads to a poorly dispersed structure. X-ray data demonstrate increases in the interlaminar spacing for organomodified MMT (up to 2 times), which is indicative of MMT intercalation. Clay addition leads to 40–65% increase in the shear adhesion strength of the cured epoxy resin. The sonication influence on the shear adhesion strength of the system with 2 wt% of any clay is very small. Ultrasound stirring of the systems with 5 wt% of clay results in higher values of adhesion for organomodified MMT.  相似文献   

16.
Soy and cottonseed proteins appear promising as sustainable and environment-friendly wood adhesives. Because of their higher cost relative to formaldehyde-based adhesives, improvement in the adhesive performance of proteins is needed. In this work, we evaluated the adhesive properties of soy and cottonseed protein formulations that included phosphorus-containing acids and esters. For cottonseed protein isolate, most of these additives improved dry adhesive strength, with methylphosphonic acid, phosphorous acid, and phosphoric acid increasing the dry strength by 47, 44, and 42%, respectively, at their optimal concentrations. For soy protein isolate, these additives did not show significant benefits. The phosphorus-containing additives also improved the hot water resistance of the cottonseed protein formulations but showed either no effect or a negative effect for the of soy protein formulations. Thus, the combination of cottonseed protein with phosphorus additives appears to be attractive as wood adhesives.  相似文献   

17.
In this paper, a series of new environmentally friendly bioadhesives with improved bonding strength were quickly synthesized via urea, sodium dodecyl sulfate (SDS) and propanetriol are mixed with soy isolate protein. The results showed that the bonding strength of the modified adhesives was changed with the increasing content of propanetriol. The maximum dry shear strength of the plywood bonded with the resultant adhesive was increased to 2.45 MPa when the propanetriol content was 20 ml. While the maximum wet shear strength of the plywood bonded with the resultant adhesive arrived 1.32 MPa, which is acceptable for industrial application in plywood fabrication according to the national standards of the People’s Republic of China (≥0.7 MPa). In addition, the orthogonal experiment suggested that the obtained material with pH of 9 for 5 h mixing at the hot pressing temperature of 120 °C exhibited the best comprehensive performance. Also, the FTIR, SEM and DSC measurements showed that the adhesives had a compact structure with stable thermal property.  相似文献   

18.
A green and sustainable soybean flour (SF) adhesive is considered as a potential alternative to toxic formaldehyde-based resins. Nevertheless, poor bond stability and low bonding strength is caused by the uneven size distribution and low reactivity of SF. Herein, SF adhesives with excellent and stable performance are synthesized via the synergistic action of high-pressure homogenization (HPH) treatment by incorporating a green crosslinker. Specifically, an even distribution of the SF particles is obtained after the HPH treatment, from which large soy protein molecules are broken to several small and even single protein molecules. In this way, the adhesion stability is improved. Additionally, more active groups buried in proteins are exposed after the HPH treatment due to the unfolding of the protein molecules. Therefore, a more reactive SF is obtained and thus forms a denser crosslinking structure of resultant the adhesive, providing an increase in bonding strength. Particularly, the effects of homogenizing pressure on the adhesive performance are investigated. The results show that a 215.6% increase of wet bonding strength (1.01 MPa) is obtained after the HPH treatment with a homogenizing pressure of 20 MPa, meeting the standards (GB/T 9846-2015) for interior applications.  相似文献   

19.
Mussel-inspired dopamine chemistry is popular among engineers for surface modification on various substrates due to its high efficiency, handy operation process, and strong reactivity. However, the high cost of dopamine does not allow for mass production. In the present study, low-cost dopamine analogues (alkali lignin and tannic acid) were used to fabricate high-reactivity silkworm silk fiber (SF) via a simple dip-coating approach, and were then applied to a soy-based adhesive to enhance its performance. The SF tightly combines with soy protein mainly via a Schiff base reaction between polydopamine or dopamine analogue and the amine or thiol groups of soy protein; this forms a multiple crosslinked system and “reinforced concrete”-like structure, as confirmed by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetry, and scanning electron microscopy analyses. As expected, the toughness of the soy-based adhesive obviously improved and the highest wet shear strength of the adhesive samples attained 1.50 MPa, which is far greater than relevant interior use requirements. Though dopamine-coated SF could significantly enhance the wet shear strength of the soy-based adhesive by 387.1% compared to the pristine SM adhesive, lignin-coated and tannic acid-coated SFs are more suitable for practical application due to the lower cost of raw materials. The results of this study may represent an effective and low-cost approach to mussel-inspired surface modification chemistry for the mass production of high-performance soy-based adhesives. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48785.  相似文献   

20.
In the case of bonding of aluminum alloy, surface pretreatment have been widely adopted for adherends so as to achieve superior adhesive performance. However, the strict surface treatment of the aluminum alloy cannot be implemented without special equipment and the mechanical properties, corrosion resistance and aging resistance of the common adhesives cannot meet the demand without surface treatment. Here, acrylic oligomer modified by carboxyl terminated organosilicon and nano alumina were used to modify an epoxy formulation based on a classical DGEBA monomer to produce a high peel strength epoxy adhesive that can be used without surface pretreatment. The peel strength and the shear strength of the adhesive could reach 7.18?N/cm and 18.75?MPa, respectively, and could be well maintained under ?70?°C and 100?°C. The novel adhesive also has good heat aging resistance, water resistance and artificial seawater resistance. SEM and XPS were used to investigate mechanism of aging resistance of modified adhesives without surface treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号