首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The genetic code is reviewed from the standpoints of its function and evolution. The code has probably always consisted of 64 units (codons), each containing three bases. Each codon pairs with a three-base anticodon that is part of an adaptor molecule. The adaptors are transfer RNA molecules that are each joined to a specific amino acid. Many departures from the universal code have recently been discovered. These are discussed.  相似文献   

3.
Significant departures from the canonical (cloverleaf) secondary structure of transfer (t)RNAs can be found among the mitochondrial (m)tRNAs of higher metazoans; these mtRNAs thus pose a challenge to the concept of an invariant, L-shaped tertiary conformation for all tRNAs. For bovine mtRNASer(AGY), which lacks the entire "dihydrouridine" (dhU) arm, two distinct tertiary models have been proposed: the first model preserves the L-shaped conformation at the expense of overall size; the second model preserves the absolute distance between the 3' terminus and the anticodon loop, while allowing the acceptor-anticodon interstem angle to vary. We have tested the central predictions of these two models by performing a series of transient electric birefringence measurements on bovine mtRNASer(AGY) constructs in which the aminoacyl-acceptor and anticodon stems were each extended by approximately 70 bp. This mtRNA species is particularly amenable to analysis, since the native bovine (heart) mtRNA is completely unmodified outside of the anticodon loop. For magnesium ion concentrations above 1 mM, the interstem angle for the extended mtRNA, 120(+/-5) degrees, is approximately 50% larger than the corresponding angle for yeast tRNAPhe (70-80 degrees) under the same ionic conditions. Furthermore, the interstem angles of the two tRNAs exhibit strikingly different responses to the addition of magnesium ions: the interstem angle for yeast tRNAPhe is reduced by nearly 50 % upon addition of 2 mM magnesium ions, whereas the angle for mtRNASer(AGY) increases by about 10%. Our data thus support a central prediction of the second model; namely, that truncated mtRNAs will possess more open interstem angles. In addition, we demonstrate that birefringence amplitude data can be used to provide model-independent estimates for the interstem angles.  相似文献   

4.
The nucleoside conformation of pseudouridine (psi) was investigated in a series of RNA oligonucleotides and compared with the same sequences containing the parent, unmodified uridine nucleoside. 1H NMR spectroscopy was used to determine the glycosyl conformational preference in pseudouridine systems at the nucleoside level; these experiments were extended to trimers, and ultimately to RNA tetraloop hairpins that are models for the codon-anticodon interaction in tRNA. ROESY 1D and 2D NMR experiments were used to measure the nucleoside conformational preference as a function of temperature. The thermodynamic stability of the RNA tetraloops was also analyzed using UV monitored Tm experiments which established that pseudouridine has a very strong stabilizing effect on double-stranded, base pairing interactions when the modification is located within a base-paired region. This was shown for a tetraloop hairpin model of the codon-anticodon interaction in tRNA(Tyr) which contains a psi at position 35. Pseudouridine also stabilizes double-stranded RNA when the psi modification is in a single-stranded region adjacent to a duplex region as occurs for psi at positions 38 or 39 in tRNA(Lys) and tRNA(His). These results establish that pseudouridine modification of RNA is a powerful and versatile mechanism for stabilizing local RNA structure in both single-stranded and double-stranded regions. Previously postulated roles for pseudouridine as a "conformational switch" are unlikely in light of the increased barrier to rotation about the glycosyl bond upon modification of uridine to pseudouridine. The Tm and NMR data show that local RNA stacking stabilization as a result of psi will stabilize adjacent double-stranded RNA regions such as the codon-anticodon interaction in tRNA.  相似文献   

5.
Temperature-sensitive mutants of E. coli have been isolated which restrict the growth of strains of bacteriophage T4 which are dependent upon the function of a T4-coded amber or ochre suppressor transfer RNA. One such mutant restricts the growth of certain ochre but not amber suppressor-requiring phage. Analysis of the T4 tRNAs synthesized in this host revealed that many nucleotide modifications are significantly reduced. The modifications most strongly affected are located in the anticodon regions of the tRNA'S. The T4 ochre suppressor tRNAs normally contain a modified U residue in the wobble position of the anticodon; it has been possible to correlate tha absence of this specific modification in the mutant host with the restriction of suppressor activity. Furthermore, the extent of this restriction varies dramatically with the site of the nonsense codon, indicating that the modification requirement is strongly influenced by the local context of the mRNA. An analysis of spontaneous revertants of the E. coli ts mutant indicates that temperature sensitivity, restriction of phage suppressor function, and undermodification of tRNA are the consequences of a single genetic lesion. The isolation of a class of partial revertants to temperature insensitivity which have simultaneously become sensitive to streptomycin suggests that the translational requirement for the anticodon modification can be partially overcome by a change in the structure of the ribosome.  相似文献   

6.
7.
The crystal structure of an HIV-1 trans-activation response region (TAR) RNA fragment containing the binding site for the trans-activation protein Tat has been determined to 1.3-A resolution. In this crystal structure, the characteristic UCU bulge of TAR adopts a conformation that is stabilized by three divalent calcium ions and differs from those determined previously by solution NMR. One metal ion, crucial to the loop conformation, binds directly to three phosphates in the loop region. The structure emphasizes the influence of metal ion binding on RNA structure and, given the abundance of divalent metal ion in the cell, raises the question of whether metal ions play a role in the conformation of TAR RNA and the interaction of TAR with Tat and cyclin T in vivo.  相似文献   

8.
We describe a method for predicting the three-dimensional (3-D) structure of proteins from their sequence alone. The method is based on the electrostatic screening model for the stability of the protein main-chain conformation. The free energy of a protein as a function of its conformation is obtained from the potentials of mean force analysis of high-resolution x-ray protein structures. The free energy function is simple and contains only 44 fitted coefficients. The minimization of the free energy is performed by the torsion space Monte Carlo procedure using the concept of hierarchic condensation. The Monte Carlo minimization procedure is applied to predict the secondary, super-secondary, and native 3-D structures of 12 proteins with 28-110 amino acids. The 3-D structures of the majority of local secondary and super-secondary structures are predicted accurately. This result suggests that control in forming the native-like local structure is distributed along the entire protein sequence. The native 3-D structure is predicted correctly for 3 of 12 proteins composed mainly from the alpha-helices. The method fails to predict the native 3-D structure of proteins with a predominantly beta secondary structure. We suggest that the hierarchic condensation is not an appropriate procedure for simulating the folding of proteins made up primarily from beta-strands. The method has been proved accurate in predicting the local secondary and super-secondary structures in the blind ab initio 3-D prediction experiment.  相似文献   

9.
tRNA binding to the ribosomal P site is dependent not only on correct codon-anticodon interaction but also involves identification of structural elements of tRNA by the ribosome. By using a phosphorothioate substitution-interference approach, we identified specific nonbridging Rp-phosphate oxygens in the anticodon loop of tRNA(Phe) from Escherichia coli which are required for P-site binding. Stereospecific involvement of phosphate oxygens at these positions was confirmed by using synthetic anticodon arm analogues at which single Rp- or Sp-phosphorothioates were incorporated. Identical interference results with yeast tRNA(Phe) and E. coli tRNA(fMet) indicate a common backbone conformation or common recognition elements in the anticodon loop of tRNAs. N-ethyl-N-nitrosourea modification-interference experiments with natural tRNAs point to the importance of the same phosphates in the loop. Guided by the crystal structure of tRNA(Phe), we propose that specific Rp-phosphate oxygens are required for anticodon loop ("U-turn") stabilization or are involved in interactions with the ribosome on correct tRNA-mRNA complex formation.  相似文献   

10.
Genetic Algorithms for the Calibration of Constitutive Models for Soils   总被引:1,自引:0,他引:1  
This paper presents a study that uses an innovative numerical method called the “genetic algorithm” for material parameter optimization in constitutive modeling. The paper introduces a new scheme, a fitness function, to estimate the error of predicted behavior due to a given set of material parameters. Optimization efficiency of the proposed fitness function is analyzed by changing the selected genetic algorithm parameters. The genetic algorithm and the new fitness function were found to be capable of optimizing material parameters of complex constitutive models.  相似文献   

11.
Five models have been built by the ICM method for the Comparative Modeling section of the Meeting on the Critical Assessment of Techniques for Protein Structure Prediction. The targets have homologous proteins with known three-dimensional structure with sequence identity ranging from 25 to 77%. After alignment of the target sequence with the related three-dimensional structure, the modeling procedure consists of two subproblems: side-chain prediction and loop prediction. The ICM method approaches these problems with the following steps: (1) a starting model is created based on the homologous structure with the conserved portion fixed and the nonconserved portion having standard covalent geometry and free torsion angles; (2) the Biased Probability Monte Carlo (BPMC) procedure is applied to search the subspaces of either all the nonconservative side-chain torsion angles or torsion angles in a loop backbone and surrounding side chains. A special algorithm was designed to generate low-energy loop deformations. The BPMC procedure globally optimizes the energy function consisting of ECEPP/3 and solvation energy terms. Comparison of the predictions with the NMR or crystallographic solutions reveals a high proportion of correctly predicted side chains. The loops were not correctly predicted because imprinted distortions of the backbone increased the energy of the near-native conformation and thus made the solution unrecognizable. Interestingly, the energy terms were found to be reliable and the sampling of conformational space sufficient. The implications of this finding for the strategies of future comparative modeling are discussed.  相似文献   

12.
We recently developed a rapid loop closure algorithm in which bond lengths are scaled to constrain the ends of a segment to match a known distance and then gradually relaxed to their standard values, with boundary constraints maintained. Although the algorithm predicted the Zif286 zinc-finger loop to within approximately 2 A, it had a serious limitation that made its more general use tentative: it omitted the atomic environment of the loop. Here we report an extension of the algorithm to take into account the protein environment surrounding a given loop from the outset of the conformational search and show that it predicts structure with an efficiency and accuracy that could not be achieved without continuous environmental inclusion. The algorithm should be widely applicable to structure determination when complete experimental information is unavailable.  相似文献   

13.
14.
The three-dimensional solution structure of rat intestinal fatty acid-binding protein (I-FABP) complexed with palmitate has been determined using multidimensional triple-resonance NMR methods. The structure is based on 3889 conformational restraints derived mostly from 3-D 13C- and 15N-resolved nuclear Overhauser (NOESY) experiments. The 3-D NOESY data for this 15.4 kDa complex contained an average of nine possible interpretations per cross-peak. To circumvent this ambiguity, an eight-stage iterative procedure was employed to gradually interpret and introduce unambiguous distance restraints during subsequent rounds of structure calculations. The first stage of this procedure relied critically upon an initial structural model based on the consensus 1H/13C chemical shift-derived secondary structure and a set of symmetry-checked restraints derived from the 3-D 13C-resolved NOESY spectrum. The structures were calculated using DISTGEOM, a program that implements a novel distance geometry algorithm with pairwise Gaussian metrization. A central feature of this algorithm is the use of an iteratively optimized Gaussian distribution for the selection of trial distances, which overcomes the tendency of metrization to produce crushed structures. In addition, this algorithm randomly selects pairwise elements of the distance matrix, which results in an improved sampling of conformational space for a given computational effort. The final family of 20 distance geometry/simulated annealing structures exhibited an average pairwise C(alpha) root-mean-square deviation of 0.98 A, and their stereochemical quality, as assessed by PROCHECK, was comparable to that of 2.5 A X-ray crystal structures. The NMR structure was compared with the X-ray crystal structure of the same ligand/protein complex and was found to be essentially identical within the precision of the results. The NMR structure was also compared with that of the palmitate complex with bovine heart FABP, which shares 30% sequence identity with rat I-FABP. The overall folds were the same, but differences were noted with respect to the presence or absence of apparent conformational heterogeneity and the location and conformation of the bound fatty acid.  相似文献   

15.
16.
Upon binding of substrates the catalytic subunit (C) of cAMP-dependent protein kinase (cAPK) undergoes significant induced conformational changes that lead to catalysis. For the free apoenzyme equilibrium favors a more open and malleable conformation while the ternary complex of C, MgATP, and a 20-residue inhibitor peptide [PKI (5-24)] adopts a tight and closed conformation [Zheng, J., et al. (1993) Protein Sci. 2, 1559]. It is not clear that binding of either ligand alone is responsible for this conformational switch or whether both are required. In addition, the catalytic subunit binds MgATP and inhibitor peptide synergistically. The structural basis for this synergism is also not defined at present. Using an Fe-EDTA-mediated protein footprinting technique, the conformational changes associated with the binding of MgATP and the heat stable protein kinase inhibitor (PKI) were probed by mapping the solvent-accessible surface and structural dynamics of C. The conformation of the free enzyme was clearly distinguished from the ternary complex. Furthermore, binding of MgATP alone induced extensive conformational changes, both local and global, that include the glycine-rich loop, the linker connecting the small and large lobes, the catalytic loop, the Mg2+ positioning loop, the activation loop, and the F helix. These changes, similar to those seen in the ternary complex, are consistent with a transition from an open to a more closed conformation and likely reflect the motions that are associated with catalysis and product release. In contrast, the footprinting pattern of C.PKI resembled free C, indicating minimal conformational changes. Binding of MgATP, by shifting the equilibrium to a more closed conformation, "primes" the enzyme so that it is poised for the docking of PKI and provides an explanation for synergism between MgATP and PKI.  相似文献   

17.
18.
Genetic algorithms allow solution of more complex, nonlinear civil, and environmental engineering problems than traditional gradient-based approaches, but they are more computationally intensive. One way to improve algorithm performance is through inclusion of local search, creating a hybrid genetic algorithm (HGA). The inclusion of local search helps to speed up the solution process and to make the solution technique more robust. This paper focuses on the effects of different local search algorithms on the performance of two different HGAs developed in previous phases of this research, the self-adaptive hybrid genetic algorithm (SAHGA) and the enhanced SAHGA. The algorithms are tested on eight test functions from the genetic and evolutionary computation literature and a groundwater remediation design case study. The results show that the selection of the local search algorithm to be combined with the simple genetic algorithm is critical to algorithm performance. The best local search algorithm varies for different problems, but can be selected prior to solving the problem by examining the reduction in fitness standard deviation associated with each local search algorithm, and the time distribution associated to the local search algorithm.  相似文献   

19.
FK506 is a naturally occurring immunosuppressant whose mode of action involves formation of an initial complex with the cytosolic protein FKBP12. The composite surface of this complex then binds to and inhibits the protein phosphatase calcineurin (PP2B). To investigate why FK506 does not inhibit calcineurin directly we have conducted molecular modeling and conformational studies on published structures of FK506 both alone and in complex with FKBP12. From studies of the structure of FK506 in CDCl3 and Z-Arg32-ascomycin in water (a water soluble analogue of FK506) we suggest that the FK506 molecule can be viewed as consisting of three separate regions. The pipecolate region which extends from C24 to C10 including the pipecolate ring shows strongly conserved conformation in both solvents. The loop region which extends from C25 to C16 shows general conservation of the loop structure and the pyranose region made up of the pyranose ring and C15-C17 which shows highly variable conformation depending on solvent. Comparison of the structure of Z-Arg32-ascomycin in water with structures of FK506 bound to FKBP12 indicate that the conformation of the pipecolate region is conserved during the binding process. The conformation of the loop region was generally conserved but a significant reduction (approximately 1.7 A) in the diameter of the loop in the bound structure was observed. The conformation of the pyranose ring and C15-C17 region was found to be significantly altered in the bound structure resulting in displacements of the C13 and C15 methoxyl groups of 2.8 and 3.5 A, respectively. From computer models and molecular dynamics simulations of interactions between FK506 and FKBP12 we suggest that the conformational changes observed in bound FK506 are induced by the interaction between the 80's loop of FKBP12 and the pyranose ring of FKBP12. These interactions result in the formation of a complex with the both correct shape and surface polarity for interaction with calcineurin.  相似文献   

20.
The structure of Escherichia coli glutaminyl-tRNA synthetase (GlnRS) in complex with tRNAGln and ATP has identified a number a sequence-specific protein-tRNA interactions. The contribution to glutamine identity has previously been determined for the nucleotides in tRNAGln. Here, we report the mutational analysis of residues in all three tRNA recognition domains of GlnRS, thus completing a survey of the major sequence-specific contacts between GlnRS and tRNAGln. Specifically, we analyzed the GlnRS determinants involved in recognition of the anticodon which is essential for glutamine identity and in the communication of anticodon recognition to the acceptor binding domain in GlnRS. A combined in vivo and in vitro approach has demonstrated that Arg341, which makes a single sequence-specific hydrogen bond with U35 in the anticodon of tRNAGln, is involved in initial RNA recognition and is an important positive determinant for this base in both cognate and non- cognate tRNA contexts. However, Arg341, as well as Arg402, which interacts with G36 in the anticodon, are negative determinants for non-cognate nucleotides at their respective positions. Analysis of acceptor-anticodon binding double mutants and of a mutation of Glu323 in the loop-strand-helix connectivity subdomain in GlnRS has further implicated this domain in the functional communication of anticodon recognition. The better than expected activity (anticooperativity) of these double mutants has led us to propose an "anticodon-independent" mechanism, in which the removal of certain synthetase interactions with the anticodon eliminates structural constraints, thus allowing the relaxed specificity mutants in the acceptor binding domain ot make more productive interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号