首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
PURPOSE: To evaluate fast spin-echo and multi-shot echo-planar fluid-attenuated inversion recovery (FLAIR) sequences in paediatric brain imaging. MATERIALS AND METHODS: Matched images from 32 patients with suspected tumour or white matter disease were independently evaluated by two paediatric neuroradiologists. The observer preferences for image quality and lesion detection were analysed for differences between fast spin-echo FLAIR and multi-shot echo-planar FLAIR. Diagnostic quality was compared with that of fast spin-echo T2-weighted images. RESULTS: Images of a diagnostic quality equivalent to that of fast spin-echo T2-weighted images were achieved with both FLAIR techniques. Grey and white matter differentiation and cerebrospinal fluid (CSF) nulling were significantly better on fast spin-echo FLAIR sequences. CSF flow artefact was reduced on multi-shot echo-planar FLAIR. There was no difference in lesion detection. Fast spin-echo FLAIR images were visually preferred at the expense of longer imaging time. CONCLUSION: Fast FLAIR techniques are complementary to fast spin-echo T2-weighted sequences in imaging of the paediatric brain. We find that the fast spin-echo FLAIR sequence is preferable to the multi-shot echo-planar technique.  相似文献   

2.
This study demonstrates the value of a fast fluid-attenuated inversion-recovery (FLAIR) technique in the assessment of primary intraaxial brain tumors. Twenty-one patients with primary intraaxial brain tumors were examined by T2-weighted, proton-density-weighted fast spin echo, fast FLAIR, and contrast-enhanced T1-weighted spin echo using identical slice parameters. The images were evaluated using quantitative and qualitative criteria. Quantitative criteria were tumor-to-background and tumor-to-cerebrospinal fluid (CSF) contrast and contrast-to-noise ratio (CNR). The qualitative evaluation was performed as a multireader analysis concerning lesion detection, lesion delineation, and image artifacts. In the qualitative evaluation, all readers found the fast FLAIR to be superior to fast spin echo in the exact delineation of intraaxial brain tumors (P < .001) and the delineation of enhancing and nonenhancing tumor parts. Fast FLAIR was superior in the delineation of cortically located and small lesions but was limited in lesions adjacent to the ventricles. Fast FLAIR provided a significantly better tumor-to-CSF contrast and tumor-to-CSF CNR (P < .001). The tumor-to-background contrast and tumor-to-background CNR of the fast FLAIR images were lower than those of T2-weighted spin-echo images but higher than those of proton-density-weighted spin-echo images. FLAIR images had more image artifacts influencing the image interpretation in only two patients. Signal hyperintensities at the ventricular border were present in 92% of the patients. They are common findings in fast FLAIR and should be included into the image interpretation.  相似文献   

3.
PURPOSE: To compare an ultrafast T2-weighted (half-Fourier acquisition single-shot turbo spin-echo [HASTE]) pulse sequence with fast spin-echo T2-weighted sequences in MR imaging of brain lesions. METHODS: Fast spin-echo and HASTE images of 34 consecutive patients over the age of 50 years or with suspected demyelinating disease were reviewed independently by two neuroradiologists for the number of lesions less than 5 mm and greater than or equal to 5 mm, and for lesion conspicuity, gray-white matter differentiation, and extent of periventricular confluent signal abnormality. The reviewers also assessed for the presence of hemosiderin and extent of motion artifacts. RESULTS: Per patient, the mean number of 5-mm or larger lesions detected on fast spin-echo images (1.4) relative to the number detected on HASTE images (0.8) was not statistically significant. For lesions less than 5 mm, fast spin-echo images showed more lesions (7.5) than HASTE images did (2.4). The fast spin-echo images were better at depicting gray-white matter differentiation, conspicuity of lesions, and periventricular signal abnormality. Of four T2 hypointense lesions seen on fast spin-echo images, none was detected on HASTE images. CONCLUSION: Although the HASTE technique might be useful for rapid imaging of the brain, our study shows a diminished sensitivity for the detection of lesions less than 5 mm in diameter and for T2 hypointense lesions.  相似文献   

4.
OBJECTIVE: Gradient-echo pulse sequences can reduce imaging time and decrease motion artifacts. If gradient-echo pulse sequences are shown to be comparable to spin-echo sequences in MR imaging of the brain, then gradient-echo imaging can be valuable for examining critically ill, anxious, or uncooperative patients and can increase patient throughput. The purpose of this study was to prospectively compare one fast multiplanar spoiled gradient-recalled acquisition in the steady state (GRASS) (FMPSPGR) sequence with one conventional T1-weighted spin-echo sequence to determine the reliability of the FMPSPGR sequence for detecting cerebral lesions. SUBJECTS AND METHODS: Fifty-one patients with 142 cranial lesions, including brain tumors, infarction, infection, and noninflammatory lesions, were examined. Forty-two unenhanced and 39 contrast-enhanced FMPSPGR (113-240/2.6-3.6/90 degrees/4 [TR/TE/flip angle/acquisitions]) and spin-echo T1-weighted (400-579/11-12/90 degrees/2) MR images of the head were obtained with a 1.5-T system. The visibility, margination, and extent of the lesions; image quality; contrast; and artifacts were qualitatively and quantitatively compared. RESULTS: Supratentorial lesions were more conspicuous on the unenhanced FMPSPGR images because of the higher signal-to-noise ratio of the normal brain resulting in higher lesion contrast. The higher contrast-to-noise ratio of neoplasms on the contrast-enhanced spin-echo images was not found to be significant in the independent qualitative analysis. The conspicuity and extent of other lesions evaluated with the two pulse sequences were not significantly different for either the unenhanced or the contrast-enhanced studies. Vascular pulsation artifacts were significantly reduced on the contrast-enhanced FMPSPGR images. Susceptibility and chemical-shift phase-cancellation artifacts were more pronounced on the FMPSPGR images. CONCLUSION: The FMPSPGR sequence provides high-quality images with fewer vascular pulsation artifacts three to four times faster than the spin-echo sequence. The FMPSPGR sequence can reliably show intracranial lesions and can substitute for the T1-weighted spin-echo sequence in routine brain imaging.  相似文献   

5.
Magnetic resonance imaging of the eye usually includes T2-weighted images both for screening purposes and for characterization of melanoma. Conventional T2-weighted spin-echo (SE) imaging suffers both from long acquisition times and incomplete recovery of the vitreous' signal. A fast SE sequence was therefore compared prospectively with conventional sequences in 29 consecutive patients with lesions of the eye. Fast SE images delineated melanoma and other lesions of the eye from vitreous better than conventional T2-weighted images. Image quality and lesion conspicuity were improved on the fast sequence. Whereas melanoma appeared hypointense to vitreous on both types of images, subretinal effusion was hypointense on fast images and hyperintense on conventional T2-weighted images. Ghosting of the globe, which, however, did not decrease diagnostic value, was more pronounced on fast images. Conventional T2-weighted images may be replaced by fast SE images in MR studies of the eye with a gain in lesion conspicuity and significant time saving.  相似文献   

6.
We describe a fast double inversion recovery (DIR) imaging sequence that effectively attenuates signal from both white matter and cerebrospinal fluid (CSF). The pulse sequence uses a novel inversion/excitation scheme and fast spin-echo readout to maximize scan efficiency. The white matter/CSF suppressed images can be acquired from the entire brain in approximately 6 minutes. Evaluation of the fast DIR sequence on patients with multiple sclerosis (MS) demonstrates high lesion conspicuity.  相似文献   

7.
We carried out fluid-attenuated inversion recovery (FLAIR) pulse sequences with long repetition and echo times in seven children with tuberous sclerosis, and compared them with conventional spin-echo (SE) sequences. FLAIR images exhibited higher sensitivity than conventional SE images to cortical and subcortical tubers. The low signal intensity of cerebrospinal fluid on FLAIR images allowed more accurate delineation of the cortical and subcortical tubers. However, T1-weighted imaging was still superior for delineation of subependymal nodules.  相似文献   

8.
RATIONALE AND OBJECTIVES: The authors compare coronal fast fluid-attenuated inversion recovery (FLAIR) with coronal T2-weighted spin-echo (SE) magnetic resonance (MR) techniques in the diagnosis of mesial temporal sclerosis (MTS). METHODS: In this prospective study, the authors assessed MR scans of 30 patients with drug-resistant temporal lobe epilepsy (based on clinical symptomatology and electroencephalographic registrations) with MR features suggestive of MTS. MR scans of age-, sex-, and scanner-matched patients, referred for MR assessment of white matter disease, without a history of epilepsy and with no visible abnormalities on MR, were used as controls. In 16 patients the MR diagnosis was confirmed by histologic abnormalities consistent with MTS. Coronal T2 SE and FLAIR images of patients and controls were presented to two experienced radiologists in random order for independent blinded review. Hippocampal and associated extrahippocampal temporal lobe abnormalities were used for the diagnosis of MTS. RESULTS: The sensitivity of observer A was 97% for the T2 SE sequence and 100% for the FLAIR; the specificity of observer A for both techniques was 100%. The sensitivity of observer B was 53% for T2 SE and 83% for FLAIR; the specificity for observer B was 93% for the T2 SE and 100% for FLAIR. CONCLUSION: Coronal FLAIR images provide a similar or increased yield in the detection of MTS compared with T2-weighted SE images.  相似文献   

9.
PURPOSE: To evaluate the usefulness of T2-weighted fast spin-echo magnetic resonance (MR) imaging with a 512 x 256 matrix for assessment of the preoperative stage of endometrial carcinoma. MATERIALS AND METHODS: Twenty-eight women with histopathologically proved endometrial carcinoma underwent preoperative T2-weighted fast spin-echo, dynamic T1-weighted fast spin-echo, and postcontrast T1-weighted spin-echo MR imaging with a phased-array surface coil. The uterine long-axis planes in each sequence were reviewed at separate sessions by three radiologists blinded to the histopathologic data. RESULTS: For the diagnosis of myometrial invasion, no statistically significant differences were found among T2-weighted imaging, dynamic imaging, and postcontrast T1-weighted imaging. For the diagnosis of deep myometrial invasion, T2-weighted and dynamic images showed higher specificity than postcontrast T1-weighted images (T2-weighted, 89%; dynamic, 88%; and postcontrast T1-weighted, 80%). For cervical invasion, T2-weighted and dynamic images showed larger areas under receiver operating characteristic curves than did postcontrast T1-weighted images (T2-weighted, 0.78; dynamic, 0.71; and postcontrast T1-weighted, 0.67). CONCLUSION: T2-weighted imaging is useful for identifying the stage of endometrial carcinoma.  相似文献   

10.
The purpose of this study was to evaluate the diagnostic efficacy of the double inversion recovery fast spin echo (DIR-FSE) sequence for brain imaging compared to the fluid-attenuated inversion recovery (FLAIR) sequence. DIR-FSE and FLAIR-FSE sequences were obtained and compared side by side. Image assessment criteria included lesion conspicuity, contrast between different types of normal tissue, image quality, and artifacts. In addition, contrast ratios and contrast-to-noise ratios were determined. Scan time of DIR-FSE was 33% longer than scan time of FLAIR-FSE. Overall lesion conspicuity was equal on DIR-FSE and FLAIR-FSE; however, DIR-FSE showed particular advantages for infratentorial lesions and lesions with only poor contrast on T2-weighted images, whereas FLAIR was slightly superior for small superficial cerebral abnormalities. Gray-white differentiation was better with DIR-FSE. Cerebrospinal fluid suppression was equal on both sequences; cerebrospinal fluid pulsation artifacts were more pronounced on DIR-FSE but did not cause diagnostic difficulties on these images. We conclude that DIR-FSE might be obtained if infratentorial lesions and abnormalities with only slightly prolonged T2 relaxation times are suspected. Otherwise, FLAIR-FSE seems preferable.  相似文献   

11.
PURPOSE: To compare the sensitivity of conventional spin-echo, fast spin-echo, fast fluid-attenuated inversion recovery (FLAIR), and turbo gradient spin-echo MR sequences in the detection of multiple sclerosis lesions. METHODS: Conventional spin-echo, fast spin-echo, fast FLAIR, and turbo gradient spin-echo sequences were performed on a 1.0-T MR imager in seven patients with clinically definite multiple sclerosis. The images in each sequence were evaluated by two raters and consensus was reached by agreement. RESULTS: In comparing conventional spin-echo with fast spin-echo sequences, five lesions were seen only by conventional spin-echo and 63 were seen only by fast spin-echo; in comparing conventional spin-echo with fast FLAIR sequences, 18 lesions were seen only by conventional spin-echo and 109 only by fast FLAIR; in comparing conventional spin-echo with turbo gradient spin-echo sequences, 51 lesions were seen only by conventional spin-echo and seven only by turbo gradient spin-echo; in comparing fast spin-echo with fast FLAIR sequences, 45 lesions were seen only by fast spin-echo and 52 only by fast FLAIR. CONCLUSION: Fast spin-echo and fast FLAIR sequences improve the sensitivity of MR imaging in the detection of multiple sclerosis lesions with reduced acquisition time as compared with conventional spin-echo sequences. These sequences should therefore be considered for serial studies in patients with multiple sclerosis. The sensitivity of turbo gradient spin-echo was inferior to the other sequences, but its reduced acquisition time could make this technique the ideal choice for patients who cannot tolerate longer examination times.  相似文献   

12.
OBJECTIVE: The purpose of this study was to apply multishot echoplanar MR imaging (EPI) to the female pelvis and compare image quality with that of fast spin-echo MR imaging. SUBJECTS AND METHODS: Twenty-one patients with suspected pelvic disease and five healthy female volunteers were prospectively examined. MR imaging was obtained using an EPI-capable 1.0-T imager and a pelvic phased-array coil. Axial EPI and fast Spin-echo sequences were obtained at identical image locations in each patient and volunteer. Spin-echo EPI images were obtained using a multishot number of 16. Acquisition time for each EPI sequence was 2 min 10 sec. Fat-suppressed T2-weighted fast spin-echo images were obtained in 2 min 12 sec. Paired EPI and fast spin-echo MR images were independently evaluated by three reviewers. RESULTS: Delineation of the perivaginal and parametrial venous plexus on EPI was rated superior to the fast spin-echo images in 62 (77%) of 81 cases. On EPI, uterine zone anatomy and ovary visualization were judged to be inferior in 44 (56%) of 78 cases and in 18 (33%) of 54 cases, respectively. For delineation of uterine abnormalities, including leiomyoma and adenomyosis, both sequences performed almost equally well. However, ovarian cystic lesions were revealed more precisely by the fast spin-echo sequence. An overall fat-suppression effect was seen on EPI images in 62 (77%) of 81 cases. CONCLUSION: Multishot EPI cannot replace fast spin-echo sequences for imaging the female pelvis; however, because EPI has a potent fat-suppression effect and heavily T2-weighted contrast, EPI sequences can be a valuable adjunct to routine examination.  相似文献   

13.
OBJECTIVE: The purpose of this study was to assess the potential for improved lesion detection in the posterior disk attachment and its surrounding tissue in temporomandibular disorders when gadolinium-enhanced MR imaging performed with fat suppression is used. MATERIALS AND METHODS: Forty-five patients underwent MR imaging with conventional T1- and T2-weighted, gadolinium-enhanced T1-weighted, and gadolinium-enhanced fat-suppressed spin-echo imaging sequences. Qualitative and quantitative assessments of the contrast enhancement of each type of imaging were also performed. RESULTS: The contrast-enhanced fat-suppressed T1-weighted imaging sequence had several advantages over the other imaging techniques in detecting abnormalities of the posterior disk attachment and in detecting bone marrow lesions in the mandibular condyle. The most significant advantage was better enhancement of lesion conspicuity. The diagnostic accuracy of contrast-enhanced fat-suppressed imaging was 77% versus 70% for conventional contrast-enhanced imaging. The kappa value for interobserver agreement was .95 for contrast-enhanced fat-suppressed imaging and .72 for conventional contrast-enhanced imaging. CONCLUSION: Contrast-enhanced fat-suppressed T1-weighted spin-echo MR imaging is a valuable technique for visualizing the extent and degree of lesions in the posterior disk attachment and bone marrow lesions in the mandibular condyle.  相似文献   

14.
Seventeen patients with hepatic lesions [six metastases from colon, breast, and gallbladder carcinoma; one gallbladder carcinoma; five hepatocellular carcinoma; three focal nodular hyperplasia (FNH); one adenoma; and one cyst] were examined by MR breath-hold two-dimensional gradient-echo imaging to assess the potential of magnetization transfer contrast (MTC) for improved conspicuity and classification. Imaging sequences were applied with and without irradiation of off-resonant radiofrequency (RF) prepulses, but other parameters were unchanged. Therefore, quantitative assessment of MTC could be performed. In contrast to former examinations of other researchers, no significant difference of MTC was found between malignant liver lesions and benign lesions as FNH or adenoma. MTC might provide differentiation between hemangioma and cysts versus solid tumors, but MTC is not capable of distinguishing benign and malignant types of solid liver tumors. Effects of unchanged MTC prepulses on signal intensity of normal liver tissue and most lesions were more pronounced for nearly proton density-weighted fast low-angle shot (FLASH) images than for T1-weighted FLASH images, obtained by using higher excitation flip angles. Liver-to-lesion contrast could not be improved clearly by MTC prepulses. The contrast between liver and lesions in the gradient-echo breath-hold images was compared with standard T1- and T2-weighted spin-echo images. Liver-to-lesion contrast in the breath-hold images was found to be inferior to T2-weighted spin-echo images in 14 of 17 cases. Lesion conspicuity in regions near the diaphragm was better in breath-hold images, because problems with marked breathing motion (as in standard imaging) could be avoided.  相似文献   

15.
AIMS: To improve tumor conspicuity and delineation on contrast-enhanced T1-weighted MR images with and without magnetization transfer (MT) contrast as a strategy to improve the macroscopic boost volume definition in the planning process of radiosurgery in patients with high grade gliomas or metastatic brain lesions. PATIENTS AND METHODS: Thirty-two patients (mean age 47 years) with histologically proven or suspected high grade glioma (n = 12) or metastatic brain lesions (n = 20) were prospectively examined by MR imaging. After the administration of gadolinium dimeglumine (0.1 mmol/kg body weight) the lesions were imaged with a T1-weighted MT-fast low angle shot (FLASH) pulse sequence and with a conventional T1-weighted SE sequence without MT saturation. RESULTS: The mean CNR of enhancing lesions on T1-weighted MT-FLASH was 15 +/- 5 compared to 11 +/- 4 on SE images, representing a significant (p < .01) improvement. The mean tumor diameter of malignant gliomas was significantly (p < .01) larger measured on T1-weighted MT-FLASH images compared to those obtained from T1-weighted SE images and were comparable for metastatic lesions. Lesion conspicuity and delineation were improved in 50% of patients with high grade gliomas and in 35% of patients with brain metastases. Lesion conspicuity was markedly improved in the posterior fossa. Additional contrast enhancing lesions were detected in 10% of patients with metastases on MT-FLASH images. CONCLUSIONS: It is concluded that contrast-enhanced MT-FLASH images may improve lesion detection and delineation in the planning process of radiosurgery in patients with intracranial high grade gliomas or metastases or even alter the treatment approach.  相似文献   

16.
To compare the clinical usefulness of T2-weighted breath-hold sequences for imaging the liver, 33 patients with 97 focal hepatic lesions were studied with a 1.0-T scanner by using T2-weighted breath-hold turbo spin-echo (SE) sequences and T2-weighted breath-hold half-Fourier single-shot turbo SE (HASTE) sequences with and without fat suppression. Images were quantitatively analyzed for liver signal-to-noise ratio (SNR) and lesion-to-liver contrast-to-noise ratios (CNR). Qualitative analysis was performed for lesion conspicuity, motion artifacts, and anatomic sharpness of extrahepatic structures. Breath-hold turbo SE imaging with fat suppression showed the highest CNR for cystic lesions and the best lesion conspicuity for cystic and solid lesions among the four sequences. For solid lesions, there was no significant difference of lesion-to-liver CNR between them. HASTE sequence was superior to turbo SE sequences in terms of motion artifacts; however, the usefulness for evaluating focal hepatic lesions was limited compared with turbo SE sequence with fat suppression. Addition of fat suppression was not helpful for HASTE imaging because of decreased lesion conspicuity and extrahepatic details without the advantage of reducing motion artifacts. This study suggests that turbo SE sequence with fat suppression is most useful for breath-hold T2-weighted liver imaging at 1.0 T. Addition of imaging without fat suppression can be considered for evaluating extrahepatic structures. HASTE sequence may have a role for imaging uncooperative patients due to absence of motion artifacts.  相似文献   

17.
OBJECTIVE: The goal of our study was to compare a T2-weighted breath-hold fast spin-echo (BHSE) technique with T2-weighted non-breath-hold fast spin-echo techniques for imaging the liver. SUBJECTS AND METHODS: Thirty-three patients with hepatic lesions had T2-weighted BHSE images obtained in 22 sec and conventional T2-weighted non-breath-hold fast spin-echo images obtained in 3 min 12 sec with and without fat suppression. Images were analyzed quantitatively by measuring the lesion-liver contrast, spleen-liver contrast, and signal-to-noise ratios of lesions and qualitatively by evaluating the sharpness of hepatic contours, visibility of intrahepatic vessels and other segmental landmarks, and presence of artifacts. RESULTS: Quantitatively, lesion-liver contrast, spleen-liver contrast, and signal-to-noise ratios obtained with the BHSE technique were inferior to those obtained with fast spin-echo techniques with and without fat suppression (11.2 +/- 7.1 versus 15.4 +/- 10.6 and 14.5 +/- 9.8, p < .001; 5.3 +/- 3.7 versus 8.7 +/- 3.5 and 7.0 +/- 3.8, p < .001; 16.2 +/- 8.2 versus 20.1 +/- 10.9 and 19.7 +/- 9.5, p < .01, respectively; Student's t test). Qualitatively, image artifacts and intrahepatic vessel depiction on BHSE images were similar to those obtained with the fast spin-echo techniques. The BHSE technique was superior to fat-suppressed fast spin-echo technique for showing hepatic contours (p < .01; Wilcoxon signed-rank test). CONCLUSION: The BHSE technique is quantitatively inferior to non-breath-hold fast spin-echo techniques. However, further studies with a surgical standard of reference are needed to compare the three techniques in terms of sensitivity.  相似文献   

18.
BACKGROUND AND PURPOSE: Although MR spectroscopy and functional MR imaging of the brain have been successful at 4 T, conventional fast spin-echo imaging of the brain at 4 T has not been adequately evaluated. The purpose of this study was to compare the detection of white matter abnormalities in multiple sclerosis (MS) at 1.5 T and 4 T. METHODS: Fifteen patients with clinically definite MS were imaged at both 1.5 T and 4 T within a 1-week period. Comparison was made between fast spin-echo long-TR images at both field strengths. Pulse sequences were tailored to maximize resolution and signal-to-noise ratio in clinically relevant imaging times (< 7 min). Four interpreters independently reviewed the images obtained at both field strengths in separate sessions and evaluated them for lesion identification, size, characterization, and subjective resolution. Differences in interpretations at 1.5 T and 4 T were subsequently recorded. RESULTS: Images obtained at 4 T showed a mean of 88 more lesions as compared with images obtained at 1.5 T. All the lesions measured less than 5 mm and were typically aligned along perivascular spaces. Twenty-five consensually identified lesions on 4-T images were not seen at all on 1.5-T images. Moreover, 4-T images showed 56 additional consensually identified lesions, which were indistinct and seen only in retrospect on 1.5-T images. These lesions were frequently (n = 48) identified in large confluent areas of white matter signal intensity abnormality at 1.5 T. All observers also agreed that 4-T images subjectively enhanced the perception of normal perivascular spaces and small perivascular lesions. CONCLUSION: MR imaging at 4 T can depict white matter abnormalities in MS patients not detectable at 1.5 T through higher resolution with comparable signal-to-noise ratio and imaging times.  相似文献   

19.
PURPOSE: To compare the efficacy of two nonionic T2*-shortening contrast agents, DyDTPA-BMA dysprodiamide injection and GdDTPA-BMA gadodiamide injection, as perfusion-sensitive MR imaging agents in normal and acutely ischemic brain. METHODS: The magnetic susceptibility effects of intravenous injections of 0.10-0.50 mmol/kg of each contrast agent were quantified on T2-weighted spin-echo images of cat brain before and after unilateral occlusion of the middle cerebral artery by measuring signal intensity changes in the same regions-of-interest in parietal cortex. RESULTS: In normal brain, DyDTPA-BMA produced a significantly greater loss of signal intensity than equimolar doses of GdDTPA-BMA. The magnitude of the signal intensity attenuation was dosage-dependent and proportional to the square of the magnetic moments of the two contrast agents. Restoration of baseline image signal intensity was observed within 30 min after each injection. However, injection of GdDTPA-BMA also produced a delayed, persistent hyperintensity on T2-weighted images, presumably due to its underlying T1-shortening effect. Following unilateral occlusion of the middle cerebral artery, unenhanced T2-weighted images failed to show evidence of cerebral injury for 1.5-3 hours. Administration of 0.10-1.0 mmol/kg DyDTPA-BMA shortened the time for detection of perfusion deficits (residual hyperintensity) in 22 of 36 (61%) treated cats, often to within 30 min after arterial occlusion. DyDTPA-BMA enhancement also improved lesion conspicuity in 26 of 36 (72%) cases, and disclosed very small infarcts that were not visible on T2-weighted precontrast images. Perfusion deficits in areas of partial ischemia were seen more clearly on DyDTPA-BMA-enhanced images than after equimolar injections of GdDTPA-BMA. CONCLUSIONS: Magnetic susceptibility contrast-enhanced MR imaging enables detection of perfusion deficits associated with acute cerebral ischemia well in advance of conventional T2-weighted spin-echo MR imaging without contrast. DyDTPA-BMA appears to delineate regions of ischemic damage better than GdDTPA-BMA.  相似文献   

20.
We compared the fluid-attenuated inversion recovery (FLAIR) sequence with conventional spin-echo (SE) imaging for detection of involvement of the central nervous system in five patients with myotonic dystrophy (MD). The diagnosis was made based on clinical features and DNA analysis. All patients showed abnormal high-intensity lesions in the white matter on T2-weighted images, although these were more clearly visible using FLAIR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号