首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The aim of this study was to develop and evaluate statistical models for predicting the uniaxial compressive strength (UCS) and average Young’s modulus (E av) for caliches, using some index and physical properties. The caliche samples, from Adana, southern Turkey, were of low strength and difficult to sample. X-ray diffraction and microscopy were undertaken and the following physical parameters established: unit weight, apparent porosity, Schmidt rebound number, Shore hardness, P-wave velocity, slake durability, point load, uniaxial compressive strength and average Young’s modulus. Simple and linear regression variable selection analyses were performed. The best relationships were obtained for UCS with P-wave velocity and unit weight and for average Young’s modulus with P-wave velocity, porosity and slake durability. Empirical equations are proposed, although it is emphasised that these may only be applicable for caliche of a similar geological character.   相似文献   

2.
Some factors affecting the uniaxial strength of weak sandstones   总被引:1,自引:0,他引:1  
The paper reports on a study of the weak sandstones of the Shihti and Kweichulin Formations to the east of Taipei, Taiwan. The results indicate that the wave velocity and uniaxial compressive strength (UCS) of the samples decreased as water content increased, while wave velocity, UCS and slake durability increased with increasing porosity. Regression analyses demonstrated that wave velocity, UCS and slake durability decreased with increased quartz content. The values of these engineering properties also increased with a higher proportion of matrix/detritus, although the exact nature of the interrelationships between these factors is not clear.  相似文献   

3.
Compressive strength is the most widely used design parameter in the construction industry and in rock engineering. For example, Bieniawski [Bieniawski, Z. T., Estimating the strength of rock materials, Is. J. S. Afr. Inst. Min. Metall., 1974, 74, 312–320.] reported that mining engineers request the uniaxial compressive strength (UCS) more often than any other rock property. However, standards set for specimen preparation are very demanding. Therefore it is quite difficult and sometimes impossible to fulfill these requirements using weak rocks and especially shales. This paper evaluates the use of the slake durability and Shore hardness tests to estimate UCS, based on laboratory correlations performed for this study and others and based on analysis of structural and physical material properties affecting both strength and durability.  相似文献   

4.
Tuffs, classified as weak rock to hard soil with respect to their strength, slake on exposure, hence engineering problems occur as they weather and loosen. Weathering grades were determined in the field and in the laboratory using petrographic, chemical, physico-mechanical, P-wave velocity, and slake durability measures. Strong correlations were found between chemical weathering index, average porosity and fractal parameters based on the slake durability test results. The shapes of the tuff particles before and after the slaking test were investigated using the fractal dimension method to explain numerically the variations of the surface characteristics of the test samples due to weathering. Two fractal parameters are proposed for the second and fifth cycles of the slake durability test. The study has shown that for assessing the weathering state of tuffs, the fractal dimension approach could be a more effective tool than other methods of weathering grade determination.  相似文献   

5.
The accurate determination of geomechanical properties such as uniaxial compressive strength and shear strength requires considerable time in collecting appropriate samples, their preparation and laboratory testing. To minimize the time and cost, a number of empirical relations have been reported which are widely used for the estimation of complex rock properties from more easily acquired data. This paper reports the use of an artificial neural network to predict the deformation properties of Coal Measure rocks using dynamic wave velocity, point load index, slake durability index and density. The results confirm the applicability of this method.  相似文献   

6.

Because the preparation of standard samples may not always be possible for weak or soft rocks, the prediction of uniaxial compressive strength (UCS) from indirect methods is widely used for preliminary investigations. In this study, the possibility of predicting UCS from the slake durability index (SDI) was investigated for pyroclastic rocks. For this purpose, pyroclastic rocks were collected from 31 different locations in the Cappadocian Volcanic Province of Turkey. The UCS and SDI tests were carried out on the samples in the laboratory. The UCS values were correlated with the SDI values and a very strong exponential relation was found between the two parameters. Since some data were scattered over the UCS values of 20 MPa, the correlation plot was redrawn for above and below the UCS values of 20 MPa, respectively. Very strong linear correlations were developed for two cases. Our concluding remark is that the UCS of pyroclastic rocks can be estimated from the SDI.

  相似文献   

7.
The paper reports a study to assess the relationship between slake durability indices and uniaxial compressive strength, Schmidt hardness, P-wave velocity, modulus of elasticity, effective porosity, water absorption and dry and saturated unit weight for seven types of carbonate rocks obtained from south west Turkey. It was found that the dry unit weight, saturated unit weight and Schmidt hardness gave the best relationship with first cycle slake durability (r = 0.99) while uniaxial compressive strength has a strong relationship with fourth cycle slake durability (r = 0.94). The results showed little difference in the correlation coefficients obtained after the fourth cycle. It is concluded that, for the rocks studied, the first and fourth cycles provide sufficiently good data on the durability for preliminary engineering/design works and that the second to fourth cycle results could be estimated using the first cycle slake durability index (r = 0.99–0.97).  相似文献   

8.
Aggregate degradation (AD) is one of the major reasons accounting for failure of aggregate materials, and the mechanical degradation of aggregate materials can be determined by different test methods. This process basically requires many aggregate samples and special instruments, and thus is time-consuming. The main purpose of this research is to evaluate the possibility of estimating the AD characteristics using rock strength tests and to investigate the relationships between AD properties and rock strength tests. For understanding the relationships, two common rock strength tests are employed, i.e. unconfined compressive strength (UCS) and point load index (PLI) tests. In the tests, the AD properties of 40 kinds of carbonate aggregates sampled from Iran were studied. The AD properties were determined by Los Angeles abrasion value (LAAV), aggregate impact value (AIV) and aggregate crushing value (ACV). Also, the samples are classified according to the strength and rock types, and the effect of this classification is investigated based on the relationship between rock strengths and AD properties. The results indicate that the PLI is better than UCS for evaluation of AD properties. Among rock strength tests, PLI has a closer relationship with AIV (R2 = 0.832). Also, UCS has relative larger effects on the ACV (R2 = 0.812) under the same loading condition. The weakest correlation occurs between LAAV and UCS (R2 = 0.679). In view of the rational AD properties in the predictive procedure, it is possible to predict AD properties based on the strength tests and rock types. The results also show that the prediction of AD properties using rock strength test based on rock types yields better correlations than that using unclassified samples. The classification based on rock types can extrapolate the different relationships of AD prediction from rock strength tests. The results in this context could be used for preliminarily selecting proper rock aggregates with a limit of allowable AD tests for practical applications by PLI.  相似文献   

9.
Uniaxial compressive strength is considered one of the most important parameters in the characterization of rock material in rock engineering practice. The study investigated correlations between uniaxial compressive strength and point load index, P-wave velocity and Schmidt hardness rebound number together with the effects of core diameter size. A total of 150 core samples at five different diameters (54, 48, 42, 30 and 21 mm) were obtained from sandstone, limestone and cement mortar. Ten saturated samples at each diameter (length:diameter ratio 2:1) were prepared from each of the three materials. The best correlations were found between uniaxial compressive strength and point load or Schmidt hammer values. The closest relationship was observed for the 48 mm diameter cores.   相似文献   

10.
The uniaxial compressive strength(UCS) of rock is an important parameter required for design and analysis of rock structures,and rock mass classification.Uniaxial compression test is the direct method to obtain the UCS values.However,these tests are generally tedious,time-consuming,expensive,and sometimes impossible to perform due to difficult rock conditions.Therefore,several empirical equations have been developed to estimate the UCS from results of index and physical tests of rock.Nevertheless,numerous empirical models available in the literature often make it difficult for mining engineers to decide which empirical equation provides the most reliable estimate of UCS.This study evaluates estimation of UCS of rocks from several empirical equations.The study uses data of point load strength(Is(50)),Schmidt rebound hardness(SRH),block punch index(BPI),effective porosity(n) and density(ρ)as inputs to empirically estimate the UCS.The estimated UCS values from empirical equations are compared with experimentally obtained or measured UCS values,using statistical analyses.It shows that the reliability of UCS estimated from empirical equations depends on the quality of data used to develop the equations,type of input data used in the equations,and the quality of input data from index or physical tests.The results show that the point load strength(Is(50)) is the most reliable index for estimating UCS among the five types of tests evaluated.Because of type-specific nature of rock,restricting the use of empirical equations to the similar rock types for which they are developed is one of the measures to ensure satisfactory prediction performance of empirical equations.  相似文献   

11.
In order to utilize the Equotip hardness tester, originally developed in the field of metallic engineering, as an indirect method to predict the unconfined compressive strength (UCS) of rock, laboratory tests were undertaken to establish the UCS, Equotip hardness (L-value) and porosity of nine rock types. Using existing data from Verwaal and Mulder (Int J Rock Mech Min Sci Geomech Abstr 30:659–662, 1993) and the results of laboratory tests, an equation relating UCS (MPa) and L-value obtained from single impacts (L s) and porosity (n %) was derived, which provides a close approximation of the UCS value. An equation to relate UCS and Equotip hardness is also presented, although this is less accurate. It is considered Equotip testing has advantages over the commonly used Schmidt hammer test.   相似文献   

12.
It is generally accepted that the uniaxial compressive strength(UCS)and P-wave velocity of rocks tend to decrease simultaneously with increasing temperature.However,based on a great number of statistical data and systematic analysis of the microstructure variation of rocks with temperature rising and corresponding propagation mechanism of elastic wave,the results show that(1)There are three different trends for the changes of UCS and P-wave velocity of sandstone when heated from room temperature(20C or 25C)to 800C:(i)Both the UCS and P-wave velocity decrease simultaneously;(ii)The UCS increases initially and then decreases,while the P-wave velocity decreases continuously;and(iii)The UCS increases initially and then fluctuates,while the P-wave velocity continuously decreases.(2)The UCS changes at room temperaturee400C,400Ce600C,and 600Ce800C are mainly attributed to the discrepancy of microstructure characteristics and quartz content,the transformation plasticity of clay minerals,and the balance between the thermal cementation and thermal damage,respectively.(3)The inconsistency in the trends of UCS and P-wave velocity changes is caused by the change of quartz content,phase transition of water and certain minerals.  相似文献   

13.
This paper describes an application of the geological strength index (GSI) method to the San Mauro formation, which is characterized by sandstones alternating with argillaceous marls. The Sandstone/Pelite (S/P) ratio and structural complexity were determined. Geo-structural and geo-mechanical surveys were undertaken in situ and rock samples were tested in the laboratory. A map of the S/P ratio was produced showing the bedrock divided in four classes. Three ranges of GSI values were identified. The values of the intact UCS and of the constant m i were appropriately reduced to reflect the variable presence of sandstone compared with the pelitic fraction. A “weighted average” of the intact strength properties of the hard and weak layers was adopted. The values for the intact materials were reduced from 20 to 60% depending on the GSI categories of the heterogeneous rock mass. In this way, seven classes of rock masses characterized by different values of GSI, reduced UCS and m i values were identified.  相似文献   

14.
The Schmidt hammer test is a non-destructive method which can be used in both laboratory and field to provide a quick and relatively inexpensive measure of rock hardness. The study investigated the relationship between the Schmidt hardness and modulus of elasticity, uniaxial compressive strength and index properties of nine types of rock including travertine, limestone, dolomitic limestone and schist. The empirical equations developed indicated the Schmidt hardness rebound values have a reliable relationship with the uniaxial compressive strength of rock (r = 0.92). Comparing the results with those reported by other researchers, it is concluded that no single relationship can be considered reliable for all rock types. Whilst the equations developed in this study may be useful at a preliminary stage of design, they should be used with caution and only for the specified rock types.   相似文献   

15.
 不同的微波加热方式会对岩石产生不同的加热效果,功率和时间是影响破岩效果的2个重要参数。对立方体和标准圆柱形玄武岩试样进行了3种加热路径下的微波辐射试验,并对辐射前后的试样进行P波波速和单轴压缩强度测试。结果表明,当试样内产生的热应力先超过岩石的强度极限时,试样就会崩开破坏;当试样温度先达到岩石熔点时,试样以熔化为主。采用高功率微波连续加热岩石,试样在较短时间、较低温度就发生崩开破坏,试样在崩开前波速和单轴压缩强度发生了显著降低,且功率越高,试样崩开的时间越短,波速和强度折减的越快。因此,采用高功率微波连续辐射岩石,借助于其产生的热应力使岩石崩开破碎的特点,可显著降低岩石破碎时的能量消耗,这对于微波单独应用于开采中的破碎工艺及辅助机械破岩掘进等具有重要意义。  相似文献   

16.
When a rock sample is extracted from an underground rock mass, it is subject to unloading, which will cause changes in the physical and mechanical properties. This article describes a laboratory experiment to determine the change of P-wave velocity of rock samples during a uniaxial compression test. It was found that the P-wave velocity vs. stress curves (V-S curves) of the rock samples could reflect three stages of bulk volume deformation commonly observed in a uniaxial compression test of rocks. When the applied stress was less than σ c (about 0.25–0.33 of the uniaxial compressive strength), the P-wave velocities increased rapidly with the increase of stress; this part of the V-S curves could be fitted with a power function. When the stress was greater than σ c, the P-wave velocities of rock samples increased more slowly and gradually approached the peak before decreasing dramatically near failure; the V-S curves above σ c could be fitted with a polynomial function of the second degree. During the V-S experiment, it could be also observed that the increasing rate of P-wave velocity decreased dramatically when the applied stress reached the overburden stress. An unloading index was defined as the ratio of the P-wave velocity under in situ overburden stress to the P-wave velocity at free stress and could be calculated from the measured V-S curves. Based on the calculated unloading index, the calculation of the intactness index of rock mass could be modified, and then an improvement of the basic quality (BQ) classification method of rock masses, which is used widely in China, was made.  相似文献   

17.
《Soils and Foundations》2019,59(5):1468-1480
The reduction in the shear strength of rock exposed on slope surfaces due to mechanical weathering is a ubiquitous phenomenon in regions where extreme environmental conditions prevail, i.e., repeated changes in temperature and moisture. In dealing with the slope instability problems in such regions, the long-term effects of weathering on the strength, deformation and durability characteristics of exposed rock are envisaged in this study. Therefore, in addition to conducting multiple-cycle standard slake durability tests on rock samples taken from the lithologies of Pakistan and Japan, and on artificial soft rock, the decrease in strength and stiffness is also studied by reproducing mechanical weathering in the laboratory. The reproduced laboratory weathering (RLW) is conducted with a new device that enables vacuumed saturation, freezing, thawing, drying and cooling under a maintained level of confining pressure. The decrease in strength, stiffness and durability is elucidated from the test results, which indicate that rock having a very low level of reference strain (shear strength/modulus at small strain) is resistant to RLW and slaking. Intact rock exhibits very low reference strain and this reference strain increases with an increase in the degree of weathering, which is the case of weathered rock. The decrease in the strength of rock is an important property for judging the safety of rock slopes undergoing weathering. Thus, the relation between the strength and the S-wave velocity of rock undergoing weathering is established. The authors recommend the use of this relation for a quick assessment of the strength of rock by briefly measuring the S-wave velocity of the weathered surface layer. The relationship will assist practitioners in quickly screening potentially unstable slopes.  相似文献   

18.
Engineering rock mass classification,based on empirical relations between rock mass parameters and engineering applications,is commonly used in rock engineering and forms the basis for designing rock structures.The basic data required may be obtained from visual observation and laboratory or field tests.However,owing to the discontinuous and variable nature of rock masses,it is difficult for rock engineers to directly obtain the specific design parameters needed.As an alternative,the use of geophysical methods in geomechanics such as seismography may largely address this problem.In this study,25 seismic profiles with the total length of 543 m have been scanned to determine the geomechanical properties of the rock mass in blocks Ⅰ,Ⅲ and Ⅳ-2 of the Choghart iron mine.Moreover,rock joint measurements and sampling for laboratory tests were conducted.The results show that the rock mass rating(RMR) and Q values have a close relation with P-wave velocity parameters,including P-wave velocity in field(V_(PF)).P-wave velocity in the laboratory(V_(PL)) and the ratio of V_(PF) V_(PL)(i.e.K_p = V_(PF)/V_(PL).However,Q value,totally,has greater correlation coefficient and less error than the RMR,In addition,rock mass parameters including rock quality designation(RQD),uniaxial compressive strength(UCS),joint roughness coefficient(JRC) and Schmidt number(RN) show close relationship with P-wave velocity.An equation based on these parameters was obtained to estimate the P-wave velocity in the rock mass with a correlation coefficient of 91%.The velocities in two orthogonal directions and the results of joint study show that the wave velocity anisotropy in rock mass may be used as an efficient tool to assess the strong and weak directions in rock mass.  相似文献   

19.
In this paper, the effects of weathering on durability and deformability properties for three different types of granitoid rocks were investigated. Five weathering grades ranging from fresh to completely weathered rocks were considered for each rock type. Deformability has been evaluated based on failure strain, tangent and secant modulus. For measuring these parameters, at least five uniaxial compressive strength tests with axial strain recorded were conducted on each weathering grade. To assess the weathering effect on the durability behavior of these rocks, a slake durability test was performed up to 40 cycles. The obtained results indicated that uniaxial compressive strength and elastic modulus dramatically decrease with increasing weathering grade. After moderately weathering grade, remarkable damage was observed in the structure and fabric of considered rocks. The results from slake durability tests showed that the slake durability index for each weathering grade has a certain changes trend which can be used in determination of the weathering grade and the long-term durability assessment. Moreover, the results showed that for evaluation of the long-term durability of the mentioned rock types, at least eight cycles should be considered, while two cycles were sufficient for estimation of weathering grade.  相似文献   

20.
The strength of clay-rich sandstone decreases significantly when in contact with water due to softening effects.This scenario can pose a severe threat to the stability of water diversion tunnels during construction and operation periods.To address the issues related to water-induced softening in clay-rich sandstone zones in a water diversion tunnel of Lanzhou Water Supply Project,the microscopic and micromechanical variations of rocks due to increasing water content in two different zones i.e.zones A and B,were determined by various testing methods,such as X-ray diffraction(XRD),scanning electron microscopy(SEM),thin section microscopy,micro-indentation test,sonic velocity test,and slake durability test.The microscopic analysis confirms the presence of montmorillonite mineral which is the dominant problematic geomaterial in engineering application.The integrity and durability of clay-rich sandstone were determined with sonic velocity and slake durability tests to calibrate the results obtained by the micro-indentation test.It shows that the elastic modulus and hardness of clay-rich sandstone decrease with the increase of saturation time,up to 144 h,which is more significant and rapid during early stage of saturation.After 144 h of saturation,the elastic modulus decreases by 89% and97%,and the hardness decreases by 89% and 99% for zones A and B sandstones,respectively.The results of slake durability and sonic velocity indicate that zone A sandsto ne remains 56.19% durability after 144 h of saturation,while zone B sandstone loses its durability merely after 72 h of saturation.The clay-rich sandstone starts to dissolve in water when the saturation time exceeds 144 h.The significant decreases in strength and durability of clay-rich sandstone due to water-induced softening are serious threats to tunnel stability.The improvements in the strength of surrounding rock mass by grouting and permeability by installation of drainage galleries can reduce the damage caused by water-induced softening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号