首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A photonic microwave signal generation scheme with frequency octupling is proposed and experimentally demonstrated. The scheme is based on bi-directional use of a dual-parallel Mach–Zehnder modulator (DPMZM) in a Sagnac loop. The two sub-modulators in the DPMZM are driven by two low-frequency signals with a π/2 phase difference, and the dc biases of the modulator are all set at the maximum transmission points. Due to the velocity mismatch of the modulator, only the light wave along the clockwise direction is effectively modulated by the drive signals to generate an optical signal with a carrier and ±4th order sidebands, while the modulation of the light wave along the counterclockwise direction is far less effective and can be ignored. By properly adjusting the polarization of the light wave output from the Sagnac loop, the optical carrier can be significantly suppressed at a polarizer, and then an optical signal with only ±4th order sidebands is generated. In the experiment, a pure 24-GHz microwave signal without additional phase noise from the optical system is generated using a 3-GHz local oscillator signal. As no electrical or optical filter is used, the photonic frequency octupler is of good frequency tunability.  相似文献   

2.
We investigated the quantization effect on the servo performance of a 1.8-in hard disk drive by changing the bits of the proposed quantizer model. We measured and analyzed the frequency response of the quantizer with different bits. The corresponding error rejection functions show that the poor rejection ability of the servo loop to low-frequency disturbances is caused by the quantizer in addition to the actuator pivot friction behavior. We propose a simple and low-cost scaling scheme to compensate the effect of the quantizer. With the compensation, the effect on the rejection ability is mostly due to the friction. Therefore, the effects from quantization and friction on the error rejection function can be differentiated, and the quantization and friction induced problems can be dealt with separately in the servo loop. In addition, through the proposed quantization model and measurement methodology, suitable bit resolution for the quantizer with and without the compensation can be identified.  相似文献   

3.
Wang T  Miao X  Zhou X  Qian S 《Applied optics》2012,51(10):C111-C116
A tunable multiwavelength fiber laser based on double Sagnac loops is proposed and demonstrated. Comb filter characteristics of single and double Sagnac loops are analyzed by Jones matrix. Simulated results show that there are better tunability and controllability with double loops than with a single loop, and this also has been confirmed by experimental results. By adjusting the polarization controller and the length of the polarization maintaining fiber the wavelength range, wavelength spacing, and laser linewidth can be tuned. Experimental results indicate that the linewidth of the multiwavelength fiber laser was 0.0187 nm and the optical sidemode suppression ratio was 50 dB.  相似文献   

4.
Zhou M  Luo Z  Cai Z  Ye C  Xu H  Wang J 《Applied optics》2011,50(18):2940-2948
A high-performance multiple-channel erbium-doped fiber laser (EDFL) is proposed and experimentally demonstrated, using graphene-polymer nanocomposite as a multiwavelength equalizer and an asymmetric two-stage polarization-maintaining fiber (PMF) Sagnac loop as a flexible comb filter. At first, the filtering characteristics of the PMF Sagnac loop filter (SLF) are investigated. Both theoretical and experimental results show that it can provide a flexibly switchable and tunable comblike filtering. Then, the two-stage PMF SLF is inserted into a graphene-assisted EDFL cavity for generating multiwavelength oscillation. The extreme-high third-order optical nonlinearity of graphene is exploited to suppress the mode competition of the EDFL, and a stable multiple-channel lasing is observed. By carefully adjusting the polarization controllers in the two-stage PMF SLF, not only can the lasing-line number per channel be switchable between single and multiple wavelengths, but also the wavelength spacing in the triple-wavelength condition can be tunable. In the case of triple wavelengths per channel, up to 12 wavelengths with four channels stable oscillations can be achieved. The multiple-channel EDFL can keep a high extinction ratio of >40 dB and a narrow linewidth of <0.01 nm.  相似文献   

5.
Chan EH 《Applied optics》2012,51(12):2075-2080
A technique that allows a fiber optic Sagnac interferometer based microwave photonic device to be implemented using non-polarization maintaining components inside the Sagnac loop while still obtaining an output that is insensitive to changes in environmental conditions is presented. It is based on inserting the non-polarization maintaining components in between a polarization beam combiner and a Faraday rotator mirror inside the loop. The technique also introduces a phase bias to the light propagating inside the loop. Experimental results demonstrate that the discretely and continuously tunable Sagnac loop based signal processors implemented using non-polarization maintaining components have an environmentally insensitive frequency response.  相似文献   

6.
Ning G  Shum P 《Applied optics》2007,46(29):7179-7183
A coherence-free microwave photonic filter configuration is presented. The configuration is based on a Sagnac loop interferometer containing a single-drive intensity modulator without a nonreciprocal bias unit. A notch response is obtained by modulating the clockwise and counterclockwise propagating waves inside the Sagnac loop at different times. A general theoretical analysis for both the reflected signal and the transmitted signal is obtained. Measured results verify the theoretical expressions and demonstrate a robust notch filter response.  相似文献   

7.
The properties of a 16-kbit bubble memory chip having a conventional major-minor loop organization are described. The chip can be operated up to a shift rate of 300 kHz which corresponds to a mean access time of 0.5 ms to blocks of 128 bits. Overall bias field margins of 13 percent were obtained, especially as the result of an appropriately selected layout of the transfer gates which is described in detail. Additional data are given concerning the influence of ambient temperature and of the number of propagation steps. The possibility of fabricating X-bar transfer gates using a single photomask step is demonstrated.  相似文献   

8.
Zhang C  Ai J  Gao P 《Applied optics》2012,51(14):2693-2700
The basic principle of Sagnac interferometer with modified large optical path difference is expounded on in this paper. According to the Fresnel formula, electromagnetic field energy, and energy flux, the transmittance and reflectance of each interface of a Sagnac interferometer are calculated, respectively, and then the exact expressions of the optical throughput changing with the incident angle, the angle of the incident plane, and paper plane (the bottom plane of Sagnac interferometer) and Sagnac interferometer acute angles are given. Furthermore, we analyze the effects of various parameters on the optical throughput by computer simulation, and some important conclusions are obtained. This work is of great scientific significance to the static, real-time simultaneous detection of upper atmospheric wind field.  相似文献   

9.
A novel interferometric fiber-optic gyroscope with amplified optical feedback by an Er-doped fiber amplifier (EDFA) is proposed and theoretically investigated (the proposed gyroscope is named the feedback EDFA-FOG, FE-FOG in what follows). The FE-FOG functions like a resonant fiber-optic gyro (R-FOG) because of its multiple utilization of the Sagnac loop; however, it is completely different because a low-coherence light source is used. In addition, the gyro output signal is pulsed because the modulation frequency of the phase modulator placed in the Sagnac loop is selected to match the total round-trip time delay of the light, which includes the Sagnac-loop delay plus that of the feedback loop of the fiber amplifier. The sharpness of the output pulse can be adjusted by both the gain of an EDFA and the modulation depth of the phase modulator. When rotation occurs the peak position of the output pulse is shifted as a result of the Sagnac effect. The resolution of the rotation measurement depends on the sharpness of the output pulse. The techniques of both the open-loop and closed-loop methods are described in detail, which shows the great advantage of the proposed gyroscope over the to the conventional interferometric fiber-optical gyroscope (I-FOG).  相似文献   

10.
A simple fiber laser configuration based on a semiconductor optical amplifier (SOA) is proposed for obtaining multi-wavelength oscillation at room temperature, in which a Sagnac loop mirror is used as the wavelength selective component. The SOA has a flat gain of approximately 23dB within a bandwidth of 12 nm at a small input signal power. The loop mirror was constructed using a 3dB coupler and polarization maintaining fiber (PMF). The output spectrum of the proposed laser can be adjusted by controlling the bias current of the SOA and is quite stable at room temperature. At a bias current of 150 mA, six lines are obtained with at least ?40 dBm output power and 25dB signal-to-noise ratio (SNR). The channel spacing and number of lines is determined by the length of polarization maintaining fiber (PMF) used in the loop mirror. The channel spacing of the proposed laser is 1.49 nm with a PMF 3 m. The multi-wavelength comb output can also be tuned by adjusting the operating temperature of the SOA. The multi-wavelength laser has the advantage of a simple configuration, stability at room temperature, a broad wavelength band, and no need for optical pump lasers.  相似文献   

11.
We present a theoretical analysis of recently demonstrated ultrafast all-optical interferometric switching devices (based on Sagnac and Mach-Zehnder interferometers) that use a large optical nonlinearity in a resonant regime. These devices achieve ~10-ps switching windows and do not require high-energy optical control pulses. We theoretically analyze and compare one Sagnac and two Mach-Zehnder switching configurations.  相似文献   

12.
Sagnac sensor for location of a disturbance   总被引:2,自引:0,他引:2  
Rønnekleiv E 《Applied optics》1997,36(10):2076-2083
A sensor is investigated that uses the positional dependence of the sensitivity of a Sagnac loop to determine the position of a disturbance. Error contributions from optical sources and distributed acoustical noise sources are discussed, and methods for optimizing the nonlinear time-averaged position estimator are presented. An experimental version of the sensor is investigated with realistic disturbances.  相似文献   

13.
Effects of quantization in phase-shifting digital holography   总被引:1,自引:0,他引:1  
Mills GA  Yamaguchi I 《Applied optics》2005,44(7):1216-1225
We discuss quantization effects of hologram recording on the quality of reconstructed images in phase-shifting digital holography. We vary bit depths of phase-shifted holograms in both numerical simulation and experiments and then derived the complex amplitude, which is subjected to Fresnel transformation for the image reconstruction. The influence of bit-depth limitation in quantization has been demonstrated in a numerical simulation for spot-array patterns with linearly varying intensities and a continuous intensity object. The objects are provided with uniform and random phase modulation. In experiments, digital holograms are originally recorded at 8 bits and the bit depths are changed to deliver holograms at bit depths of 1 to 8 bits for the image reconstruction. The quality of the reconstructed images has been evaluated for the different quantization levels.  相似文献   

14.
一种新型的大动态范围CCD相机视频信号处理电路   总被引:1,自引:1,他引:0  
由于目前的CCD尤其科学级CCD的动态范围高达105:1,甚至106:1,此时若要满足ADC的动态范围大于CCD相机的动态范围,则必须选择分辨力为18~20bit的ADC,而航天级或高等级的高分辨力ADC较少且价格昂贵。本文利用CCD相机系统的噪声谱密度跟信号大小有密切关系这一特点,对于强光信号和弱光信号采用不同的信号处理链,从系统通道增益的角度阐述了低分辨力ADC实现高分辨力模数转换的原理及硬件实现方案,最后通过实验室成像测试验证,实验结果表明,用低分辨力A/D转换器采用粗细量化相结合方式实现了高分辨力模数转换,并提高了CCD相机的动态范围。  相似文献   

15.
This paper describes a fiber optic sensor suitable for noncontact detection of ultrasonic waves. This sensor is based on the fiber optic Sagnac interferometer, which has a path-matched configuration and does not require active stabilization. Quadrature phase bias between two interfering laser beams in the Sagnac loop is applied by controlling the birefringence using a fiber polarization controller. A stable quadrature phase bias can be confirmed by observing the interferometer output according to the change of phase bias. Additional signal processing is not needed for the detection of ultrasonic waves using the Sagnac interferometer. Ultrasonic oscillations produced by conventional ultrasonic piezoelectric transducers were successfully detected, and the performance of this interferometer was investigated by a power spectrum analysis of the output signal. Based on the validation of the fiber optic Sagnac interferometer, noncontact detection of laser-generated surface waves was performed. The configured Sagnac interferometer is very effective for the detection of small displacement with high frequency, such as ultrasonic waves used in conventional nondestructive testing (NDT)  相似文献   

16.
We propose a continuously tunable, dual free spectral range (FSR) photonic microwave notch filter configuration using a high-birefringence linearly chirped fiber Bragg grating (Hi-Bi LCFBG) that is connected in a Sagnac loop using a Hi-Bi coupler. The configuration employs double sideband modulation and can generate two FSRs simultaneously. The larger FSR corresponds to the differential time delay of the Hi-Bi LCFBG and the Hi-Bi pigtails of the coupler; the smaller FSR corresponds to the time delay between the arms of the Sagnac loop. Measured results demonstrate dual FSR, a large notch rejection, and that the FSR is easily tunable by tuning the LCFBG. We also present the filter transfer function for the design. Experimental results agree well with the theoretical analysis.  相似文献   

17.
Zhou K  Ngo QN  Zhang X  Jin Z  Zhou D  Liu D 《Applied optics》2007,46(23):5617-5621
A method to realize room-temperature operation of a multifrequency Er-doped fiber laser with low-frequency shift feedback placed within a linear laser cavity is theoretically proposed and experimentally demonstrated. Simultaneous multiwavelength lasing with 0.5 nm wavelength spacing is experimentally demonstrated by applying a sinusoidal signal of 10 kHz to a fiber phase modulator inserted within the linear cavity to prevent single wavelength steady-state oscillation. In the linear cavity, an all-polarization-maintaining fiber Sagnac loop is used as a periodic filter, and a single-mode fiber loop with a polarization controller is used as a partial reflector and also as an output port.  相似文献   

18.
梁志国 《计量学报》2022,43(4):526-535
针对正弦拟合法评价A/D动态有效位数时测量条件对动态有效位数评价带来的误差影响,进行了拟合误差界的搜索研究.选取的条件变量分别是A/D位数、幅度、序列所含波形的周波数、初始相位、直流分量以及序列数据点数.以两两联动的双条件组合方式进行误差界搜索,获得了动态有效位数评价的误差界随不同条件变化而变化的曲线规律,筛分出了显著...  相似文献   

19.
Vakoc BJ  Digonnet MJ  Kino GS 《Applied optics》2003,42(36):7132-7136
We demonstrate a new folded Sagnac sensor array design that combines a Faraday rotator mirror and a polarization beam splitter to eliminate the optical noise pulses otherwise generated in a folded Sagnac sensor array. A depolarization scheme compatible with this configuration is also proposed and demonstrated experimentally. It is shown that this new configuration passively eliminates polarization-induced signal fading on every sensor in the array. The minimum detectable phase was measured to be approximately 1.1 microrad/square root of Hz, in agreement with theory.  相似文献   

20.
Jeong HJ  Koh YW  Lee BW  Jeon MY  Kim BY 《Applied optics》1996,35(13):2206-2210
We investigated the polarization characteristics of a mode-locked fiber laser gyroscope (MLPLG) formed with a Nd-doped fiber as an optical gain medium and a Sagnac loop mirror. The output pulse patterns and the polarization states were found to be determined by fiber birefringence in the different sections of the MLPLG. We describe the conditions for the MLPLG to operate with automatic reciprocity leading to the possibility of phase-error-free operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号