首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yb(3+) and Ln(3+) (Ln(3+) = Er(3+) or Tm(3+)) codoped Lu(2)O(3) nanorods with cubic Ia3 symmetry have been prepared by low temperature hydrothermal procedures, and their luminescence properties and waveguide behavior analyzed by means of scanning near-field optical microscopy (SNOM). Room temperature upconversion (UC) under excitation at 980 nm and cathodoluminescence (CL) spectra were studied as a function of the Yb(+) concentration in the prepared nanorods. UC spectra revealed the strong development of Er(3+) (4)F(9/2) → (4)I(15/2) (red) and Tm(3+) (1)G(4) → (3)H(6) (blue) bands, which became the pre-eminent and even unique emissions for corresponding nanorods with the higher Yb(3+) concentration. Favored by the presence of large phonons in current nanorods, UC mechanisms that privilege the population of (4)F(9/2) and (1)G(4) emitting levels through phonon-assisted energy transfer and non-radiative relaxations account for these observed UC luminescence features. CL spectra show much more moderate development of the intensity ratio between the Er(3+) (4)F(9/2) → (4)I(15/2) (red) and (2)H(11/2), (4)S(3/2) → (4)I(15/2) (green) emissions with the increase in the Yb(3+) content, while for Yb(3+), Tm(3+)-codoped Lu(2)O(3) nanorods the dominant CL emission is Tm(3+) (1)D(2) → (3)F(4) (deep-blue). Uniform light emission along Yb(3+), Er(3+)-codoped Lu(2)O(3) rods has been observed by using SNOM photoluminescence images; however, the rods seem to be too thin for propagation of light.  相似文献   

2.
Y2O3:Er3+ upconversion materials with nanoporous structures were prepared by a hydrothermal method following a post-thermal treatment. The structure and morphology of the materials were characterized by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). The results indicated that the as-obtained Y2O3:Er3+ powders were of cubic-phase structure, and the nanoporous structure was formed in the annealing process. The optical results indicated that high annealing temperature could improve the upconversion properties, but it could destroy the nanoporous structure. Under 980 nm excitation, red (4F(9/2) --> 4I(15/2) and green (2H(11/2), 4S(3/2) --> 4I(15/2)) upconversion luminescence was observed. The studies on the intensity dependence of upconversion emission indicated that two-photon processes were responsible for the green and red upconversion luminescence. This kind of multifunctional material has potential applications in nanocontainers for use as biomolecule and drugs carriers.  相似文献   

3.
The RE3Al5O12 (REAG:Er3Al5O12, Er:Y3Al5O12 and Er:Yb3Al5O12) up-conversion (UC) nanocrystals have been prepared by the non-aqueous sol-gel method. The green and red UC emissions are attributed to the 2H(11/2), 4S(3/2) --> 4I(15/2) and 4F(9/2) --> 4I(15/2) transitions of Er3+, respectively, were obtained for all samples with a 975 nm semiconductor LD excitation. For Er3Al5O12 nanocrystals, the green and red UC emissions have similar intensities. Y and Yb ions have no evident effect on the peak positions, but strongly affected the intensities of the green and red UC emissions of the Er. A much higher intensity of the green relative to red UC emission was observed for Er:Y3Al5O12 nanocrystals, however, the red UC emission became predominant for Er:Yb3Al5O12 nanocrystals. It was suggested that the two-photon process was responsible for the green and red UC emissions mechanism for all the samples.  相似文献   

4.
Yang Z  Zhu K  Song Z  Zhou D  Yin Z  Qiu J 《Applied optics》2011,50(3):287-290
We obtained upconversion (UC) light-emitting photonic materials (YbPO(4):Er) with an inverse opal structure by the self-assembly technique in combination with a solgel method. The effect of the photonic stopband on the UC luminescence of the (2)H(11/2), (4)S(3/2)→(4)I(15/2), and (4)F(9/2)→(4)I(15/2) transitions of Er(3+) has been observed in the inverse opals of the Er(3+)-doped YbPO(4). Significant suppression of the UC emission was detected if the photonic bandgap overlapped with the Er(3+) ions emission band, while enhancement of the UC emission occurs if the emission band appears at the edge of the bandgap.  相似文献   

5.
The synthesis, characterization, and spectroscopy of upconverting Yb3+/Er3+ codoped YF3 rod-like nanoclusters are presented. The YF3 nanoclusters were synthesized by a simple hydrothermal method. The clusters structure was characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Under 978 nm laser excitation, stronger blue (4F(5/2) --> 4I(15/2) and 2p(3/2) --> 4I(11/2)) and green (4S(3/2), 2H(11/2) --> 4I(15/2)) upconversion luminescence were observed at 978 nm. The measured intensity of upconversion luminescence was different when pump power changed, which shows that the blue and green upconversion luminescence come from three-photon and two-photon energy transfer processes, respectively.  相似文献   

6.
Upconversion emission of different nanocrystalline YVO4:Er3+, Yb3+ synthesized by a hydrothermal process at low temperature was studied under 980 nm excitation where green [(2H11/2, 4S3/2) --> 4I15/2] and red (4F9/2 --> 4I15/2) emissions demonstrate sensitivity to the local environments of Er3+. Small particle size, high Yb3+ concentration, or high temperature favors the emission of the 2H11/2 --> 4I15/2 transition. Both XRD patterns and Raman spectra have confirmed that crystal lattice distortion of YVO4:Er3+, Yb3+ nanocrystals is more serious when the nanoparticle size is decreasing or Yb3+ concentration is increasing. This distortion is thought to play a key role in the observed spectral properties, which might lead to a new route to improve the monochromatic upconversion emission efficiency in these nanocrystals.  相似文献   

7.
氟氧化物中Er3+的上转换发光   总被引:1,自引:0,他引:1  
赵谡玲  侯延冰  孙力  徐叙瑢 《功能材料》2001,32(1):98-99,102
研究了Er^3 离子氟氧化物上的转换发光。在980nm光的激发下,测定了Er^3 离子浓度(分别为1mol%、2mol%、3mol%)不同时材料上的转换发光光谱。在可见光范围内,观察到了强红光和绿光,并且在短波段也观察到了光的发射,波峰分别位于661.545、456、409和380nm处。还测量了各样品的上转换发光强度随激发强度的变化情况,由LogIvis-LogIin曲线可知,红光为双光子过程和三光子过程,绿光为三光子过程。并初步研究了此材料的上转换过程和上转换通道。  相似文献   

8.
Experimental results relating to the gain-switched operation of a double-clad Yb3+,Er(3+)-doped silica fiber laser that is pulse pumped with the output from a flash-lamp-pumped Ti:sapphire laser are presented. For all the configurations of the fiber laser that we studied, the 2F5/2-->2F7/2 laser transition of the Yb3+ ion lased prior to laser emission from the 4I13/2-->4I15/2 transition of the Er3+ ion. To the best of our knowledge, this is the first reported operation of sequence lasing in the Yb3+,Er(3+)-codoped system. This succession of laser pulses deduced from the measurements of this investigation is a consequence of both the short intense pump pulse and the short 900-nm wavelength of the pump that does not overlap with any important excited-state absorption transitions. We believe that the predominant interionic interaction during the course of the pump pulse is the double-energy transfer to the Er3+ ion acting twice from the 2F5/2 energy level of the Yb3+ donor ion. A maximum total output of 1.65 mJ is obtained (1.38 mJ from the 2F5/2-->2F7/2 transition of Yb3+ and 0.27 mJ from the 4I13/2-->4I15/2 transition of Er3+) from a nonoptimized configuration of the fiber laser. The wavelength of the output from the fiber laser was measured to vary approximately linearly with fiber length from 1040 to 1046 nm for the Yb(3+)-based laser and 1535 to 1541 nm for the Er(3+)-based laser.  相似文献   

9.
Pyrochlore Y2Sn2O7 nanophosphors codoped with Er3+ (fixed 2 at.%) and Yb3+ ions (2–16 at.%) were synthesized via hydrothermal process followed by heat treatment. We investigate the infrared-to-visible upconversion (UC) luminescence properties of Er–Yb codoped Y2Sn2O7. Upon 980 nm excitation at room temperature, green (at ~522 and 544 nm) and red (at ~661 nm) UC emissions were observed, which are ascribed to the (2H11/2, 4S3/2) → 4I15/2 and 4F9/2 → 4I15/2 transitions, respectively. It has been found that the Yb3+-doping concentrations have greatly influenced on the UC luminescence intensity and the emission ratio of the red and green in Y2Sn2O7:Yb3+/Er3+ nanophosphors. The tunable emission is due to the energy back transfer from Er3+ to Yb3+ and the cross relaxation between the two neighboring Er3+ ions. It is expected that the achieved single and intense red emission band may have potential application for in vivo bioimaging.  相似文献   

10.
We report the infrared emissions of Er(3+)-Tm3+ co-doped amorphous Al2O3 thin films pumped at 791 nm by a Ti:sapphire laser. The as-deposited films were annealed to improve the photoluminescence performance. Three cross relaxation channels among Er(3+)-Tm3+ and Tm(3+)-Tm3+ ions incorporated in the films were investigated as annealing temperature increases especially from 800 to 850 degrees C. In order to understand the Stark effect and cross relaxations, the photoluminescence spectra were deconvoluted by Gaussian fittings. Our results indicate that the luminescence intensity of 1.62 microm in comparison to 1.5 microm can be enhanced by the cross relaxation process [Er3+ (4I13/2) + Tm3+ (3H6) --> Er3+ (4I15/2) + Tm3+ (3F4)], and the longer-wavelength side of Er3+ emission can be improved by the CR process [Er3+ (4I15/2) + Tm3+ (3H4) --> Er3+ (4I3/2) + Tm3+ (3F4) at expense of the Tm3+ 1.47 microm emission which is also maybe quenched by the CR effect between themselves. These results suggest one possible approach to achieve broadband infrared emissions at the wavelength region of 1.45-1.65 microm from the Er(3+)-Tm3+ co-doped systems.  相似文献   

11.
The Er3+-Yb3+-Li+ codoped TiO2 powders have been prepared by sol-gel method. The strong enhancement of green and red upconversion emissions were obtained for Er3+-Yb3+ codoped TiO2 by additional Li+ codoping and investigated using 976 nm semiconductor laser diode excitation. The enhanced upconversion emissions by the addition of Li+ resulted from the formation of Li compound with lower crystal field symmetry. The fluorescence intensity ratio (FIR) of green upconversion emissions from the transitions of 2H(11/2) --> 4I(15/2) and 4S(3/2) --> 4I(15/2) of Er3+ in the Er3+-Yb3+-Li+ codoped TiO2 has been studied as a function of temperature in the range of 300-925 K, and the maximum sensitivity was determined to be 0.0025 K(-1). Er3+-Yb3+-Li+ codoped TiO2 material with the highest operating temperature up to 925 K, has higher temperature sensitivity and fluorescence efficiency being a promising candidate for applications in optical high temperature sensor.  相似文献   

12.
采用非水性溶胶-凝胶法制备了0.1%Er~(3+)(摩尔分数,下同)、0%~2%Li~+共掺杂TiO_2粉末,在980nm半导体激光器(LD)激发下获得了中心波长526nm、550nm的绿色和663nm的红色上转换发光.Li~+共掺杂对掺Er~(3+):TiO_2的相结构未产生影响,但极大增强了上转换发光强度.随Li~+共掺杂摩尔分数的逐渐增大,绿色和红色上转换发光强度先增大后减小,当Li~+摩尔分数为1%时,上转换发光强度达到最大,绿色和红色上转换发光强度分别比掺Er~(3+):TiO_2提高了约330倍、30倍和60倍.Er~(3+)Li~+共掺杂TiO_2粉末的绿色和红色上转换发光均为双光子吸收过程.Li~+共掺杂不改变Er~(3+)的上转换发光机制,但破坏了Er~(3+)的局部晶体场对称性,影响了Er~(3+)内部4f能级的跃迁几率,导致上转换发光强度增强.  相似文献   

13.
Y2O3 nanoparticles doped with different concentrations of Er3+ were prepared by the co-precipitation method. X-ray diffraction and transmission electron microscopy results show that Er3+ dissolves completely in the Y2O3 cubic phase. The Er3+:Y2O3 nanoparticles are homogeneous in size and nearly spherical, and the average diameter of the particles after being calcined at 1,000 degrees C for 2 h is in the range of 40-60 nm. When Er3+:Y2O3 nanoparticles are excited under a 980 nm diode laser, there are two main emission bands: green emission centered at 562 nm corresponding to the 4S3/2/2H11/2 --> 4115/2 radiative transitions and red emission centered at 660 nm corresponding to the 4F9/2 --> 4I15/2 radiative transitions. By changing the doping concentration of Er3+ ions, the up-conversion luminescence can be gradually tuned from green to red.  相似文献   

14.
Upconversion (C) light-emitting photonic band gap materials (YBO3: Yb, Er) with inverse opal structure were prepared by a self-assembly technique in combination with a sol-gel method. The effect of the photonic stop-band on the upconversion luminescence of Er3+ ions has been investigated in the YBO3: Yb, Er inverse opals. Significant suppression of the green or red UC emission was detected if the photonic band-gap overlaps with the Er3+ ions emission band. We successfully achieved the color tuning of the UC optical properties of the inverse opal by controlling the structure of the photonic crystal.  相似文献   

15.
陈芬  徐星辰  周亚训 《光电工程》2012,39(3):113-118
研究了由重金属氧化物Bi2O3-GeO2-PbO组分高温融熔而成的铋锗酸盐玻璃中稀土掺杂铒离子(Er3+)的吸收光谱、上转换发光谱以及玻璃基质的红外吸收谱,着重分析了975 nm和800 nm泵浦光激励下Er3+离子的上转换发光机理.结果表明,在975 nm或800 nm泵浦光激励下,观察到了绿光(529 nm、552...  相似文献   

16.
An Er(3+)-doped SiO2:Ta2O5 optical channel waveguide and nanocomposite were prepared by the sol-gel route at a Si:Ta 50:50 molar ratio. Channels with an excellent surface profile were easily and quickly fabricated by focusing a femtosecond laser onto the surface of multilayered films deposited on SiO2/Si substrates. In parallel, the same sol used to prepare the film was annealed at 900, 1000, and 1100 degrees C for 2 h, to get the nanocomposite materials. A broadband NIR emission around 1538 nm, assigned to the 4I13/2 --> 4I15/2 transition of the Er3+ ions was observed in the nanocomposites of amorphous SiO2 containing dispersed Ta2O5 nanocrystals. The 4I13/2 lifetime and emission bandwidth depend on the annealing temperature. In conclusion, Er(3+)-doped SiO2:Ta2O5 channel waveguides and nanocomposites are promising materials for photonic applications.  相似文献   

17.
ABO4 (A = Ca, Sr; B = W, Mo):Er3+/Yb3+/Li+ phosphors tri-doped with different concentrations of Li+ ion ranging from 0 to 22.5 mol% were prepared by using a solid-state reaction method. And their upconversion (UC) luminescence properties were in estimated under a 975 nm laser-diode excitation. The four kinds of phosphors (CaWO4, CaMoO4, SrWO4, and SrMoO4) tri-doped with Er3+, Yb3+ and Li+ ions showed strong green UC emission peaks at 530 nm and 550 nm and weak red UC emission. The intensity of green UC emission of Li+ doped samples was several higher than that of Li+ un-doped samples due to the reduction of lattice constant and the local crystal field distortion around rare-earth ions. The optimum doping concentration of Li+ ions was investigated and the effects of Li+ concentration for UC emission intensity were studied in detail.  相似文献   

18.
Diode-Pumped Violet Energy Upconversion in BaF(2):Er(3+)   总被引:6,自引:0,他引:6  
Under 805-nm diode-laser excitation we detected intense upconversion signals at 410, 380, and 275 nm in BaF(2):Er(3+). Energy upconversion schemes and efficiencies are discussed in detail. Intensity parameters of Er(3+) in BaF(2) were derived as Omega(2) = 1.048 ? 0.117 x 10(-20) cm(2), Omega(4) = 1.478 ? 0.180 x 10(-20) cm(2), and Omega(6) = 1.009 ? 0.127 x 10(-20) cm(2).  相似文献   

19.
Absorption and emission cross sections of Er(3+) in Al(2)O(3) waveguides   总被引:2,自引:0,他引:2  
Al(2)O(3) slab waveguide films were doped with erbium using ion implantation to a peak concentration of 1.5 at. %. Prism coupling measurements show absorption caused by (4)I (15/2) ?(4)I (13/2) intra-4f transitions in Er(3+) with a maximum at 1.530 mum of 8 dB/cm. The Er(3+) absorption cross section is determined as a function of wavelength. We used the McCumber theory to derive the emission cross section spectrum from the absorption results, which we then compared with the Er(3+) photoluminescence spectrum. The peak absorption and emission cross sections are found to be 6 x 10(-21) cm(-2). The results are used to predict the optical gain performance of an Er-doped Al(2)O(3) optical amplifier that operates around 1.5 mum.  相似文献   

20.
Room temperature multicolor Upconversion (UC) luminescence in Yb3+, Tm3+, Er3+ ions doped NaGdF4 nanocrystals have been successfully synthesized by a hydrothermal method. As-prepared nanocrystals are highly crystalline and well-dispersed in cyclohexane to form stable and clear colloidal solutions, which demonstrates strong emission properties with a single laser excitation at 980 nm. The multicolor light consists of blue, green, and red UC radiations that correspond to transitions 1G4 --> 3H6 of Tm3+, 2H(11/2)/4S(3/2) --> 4I(15/2), and 4F(9/2) --> 4I(15/2) of Er3+ ions, respectively. The UC mechanisms were proposed based on spectral, kinetic, and pump power dependence analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号