首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Loke D  Shi L  Wang W  Zhao R  Yang H  Ng LT  Lim KG  Chong TC  Yeo YC 《Nanotechnology》2011,22(25):254019
Phase-change random access memory cells with superlattice-like (SLL) GeTe/Sb(2)Te(3) were demonstrated to have excellent scaling performance in terms of switching speed and operating voltage. In this study, the correlations between the cell size, switching speed and operating voltage of the SLL cells were identified and investigated. We found that small SLL cells can achieve faster switching speed and lower operating voltage compared to the large SLL cells. Fast amorphization and crystallization of 300 ps and 1 ns were achieved in the 40 nm SLL cells, respectively, both significantly faster than those observed in the Ge(2)Sb(2)Te(5) (GST) cells of the same cell size. 40 nm SLL cells were found to switch with low amorphization voltage of 0.9 V when pulse-widths of 5 ns were employed, which is much lower than the 1.6 V required by the GST cells of the same cell size. These effects can be attributed to the fast heterogeneous crystallization, low thermal conductivity and high resistivity of the SLL structures. Nanoscale PCRAM with SLL structure promises applications in high speed and low power memory devices.  相似文献   

2.

\(\text {Ge}_2\text {Sb}_2\text {Te}_5\) (GST) is considered a promising candidate for next-generation data storage devices due to its unique property of non-volatility and low power consumption. In present work, the bulk alloys and thin films of (\(\text {Ge}_2\text {Sb}_2\text {Te}_5\))\(_{100-x}\text {Ga}_x\) (x = 0, 3, and 10) are prepared using melt quenching and thermal deposition method, respectively. The effect of Ga doping on host composition is investigated by analyzing X-ray diffraction patterns and field emission scanning electron microscope images. From obtained results, it is found that all doped thin films retained the amorphous nature and exhibited uniform and smooth morphology. In Raman spectra, the appearance of a new peak in 10% Ga-doped GST thin film indicated an alteration in the atomic arrangement of host lattice. Transmission spectra revealed the highly transparent nature of all deposited thin films in the near-infrared region. The optical band gap of Ga-doped GST thin film is lower than that of the pure GST thin film which can be correlated with an increase in band tailing, attributed to an increase in localized defect states in the band gap. Due to the pronounced electronegativity difference between the Ga and Te element, new Ga–Te bonds with a higher number of wrong bonds (Ge–Ge, Sb–Sb, and Ge–Sb) are expected to thermally stabilize the amorphous phase. Such results predict the better performance of Ga-doped GST composition for better performance of phase-change random access memory.

  相似文献   

3.
陈志武 《高技术通讯》2000,10(10):77-78
按照配方熔炼制成Sb-Se系和Ge-Sb-Te系合金,对其组织结构进行了观察测试,研究结果表明,制备的合金组织比较均匀,X射线衍射结果表明,Sb-Se系合金1#样品有Sb析出,2#样品有Se析出,符合化学计量比的3#样品全部形成Sb2Se3共晶体。Ge-Sb-Te系合金5#样品有Sb析出,而符合化学计量比的4#样品形成GeSb2Te4共晶体。  相似文献   

4.
Ge-Sb-Te materials are used in optical DVDs and non-volatile electronic memories (phase-change random-access memory). In both, data storage is effected by fast, reversible phase changes between crystalline and amorphous states. Despite much experimental and theoretical effort to understand the phase-change mechanism, the detailed atomistic changes involved are still unknown. Here, we describe for the first time how the entire write/erase cycle for the Ge(2)Sb(2)Te(5) composition can be reproduced using ab initio molecular-dynamics simulations. Deep insight is gained into the phase-change process; very high densities of connected square rings, characteristic of the metastable rocksalt structure, form during melt cooling and are also quenched into the amorphous phase. Their presence strongly facilitates the homogeneous crystal nucleation of Ge(2)Sb(2)Te(5). As this simulation procedure is general, the microscopic insight provided on crystal nucleation should open up new ways to develop superior phase-change memory materials, for example, faster nucleation, different compositions, doping levels and so on.  相似文献   

5.
Minimum voltage for threshold switching in nanoscale phase-change memory   总被引:1,自引:0,他引:1  
Yu D  Brittman S  Lee JS  Falk AL  Park H 《Nano letters》2008,8(10):3429-3433
The size scaling of the threshold voltage required for the amorphous-to-crystalline transition in phase-change memory (PCM) is investigated using planar devices incorporating individual GeTe and Sb2Te3 nanowires. We show that the scaling law governing threshold switching changes from constant field to constant voltage scaling as the amorphous domain length falls below 10 nm. This crossover is a consequence of the energetic requirement for carrier multiplication through inelastic scattering processes and indicates that the size of PCM bits can be miniaturized to the true nanometer scale.  相似文献   

6.
Phase-change memory technology relies on the electrical and optical properties of certain materials changing substantially when the atomic structure of the material is altered by heating or some other excitation process. For example, switching the composite Ge(2)Sb(2)Te(5) (GST) alloy from its covalently bonded amorphous phase to its resonantly bonded metastable cubic crystalline phase decreases the resistivity by three orders of magnitude, and also increases reflectivity across the visible spectrum. Moreover, phase-change memory based on GST is scalable, and is therefore a candidate to replace Flash memory for non-volatile data storage applications. The energy needed to switch between the two phases depends on the intrinsic properties of the phase-change material and the device architecture; this energy is usually supplied by laser or electrical pulses. The switching energy for GST can be reduced by limiting the movement of the atoms to a single dimension, thus substantially reducing the entropic losses associated with the phase-change process. In particular, aligning the c-axis of a hexagonal Sb(2)Te(3) layer and the 〈111〉 direction of a cubic GeTe layer in a superlattice structure creates a material in which Ge atoms can switch between octahedral sites and lower-coordination sites at the interface of the superlattice layers. Here we demonstrate GeTe/Sb(2)Te(3) interfacial phase-change memory (IPCM) data storage devices with reduced switching energies, improved write-erase cycle lifetimes and faster switching speeds.  相似文献   

7.
Rao F  Song Z  Ren K  Zhou X  Cheng Y  Wu L  Liu B 《Nanotechnology》2011,22(14):145702
Si-Sb-Te materials including Te-rich Si?Sb?Te? and Si(x)Sb?Te? with different Si contents have been systemically studied with the aim of finding the most suitable Si-Sb-Te composition for phase change random access memory (PCRAM) use. Si(x)Sb?Te? shows better thermal stability than Ge?Sb?Te? or Si?Sb?Te? in that Si(x)Sb?Te? does not have serious Te separation under high annealing temperature. As Si content increases, the data retention ability of Si(x)Sb?Te? improves. The 10 years retention temperature for Si?Sb?Te? film is ~393 K, which meets the long-term data storage requirements of automotive electronics. In addition, Si richer Si(x)Sb?Te? films also show improvement on thickness change upon annealing and adhesion on SiO? substrate compared to those of Ge?Sb?Te? or Si?Sb?Te? films. However, the electrical performance of PCRAM cells based on Si(x)Sb?Te? films with x > 3.5 becomes worse in terms of stable and long-term operations. Si(x)Sb?Te? materials with 3 < x < 3.5 are proved to be suitable for PCRAM use to ensure good overall performance.  相似文献   

8.
Song  Zhitang  Zhan  YiPeng  Cai  Daolin  Liu  Bo  Chen  Yifeng  Ren  Jiadong 《纳微快报(英文)》2015,7(2):172-176
Nano-Micro Letters - In this letter, a phase change random access memory (PCRAM) chip based on Ti0.4Sb2Te3 alloy material was fabricated in a 40-nm 4-metal level complementary metal-oxide...  相似文献   

9.
Performance of phase-change materials based on Ga-Te-Sb was found getting better with decreasing Te content in our earlier studies. We concerned much properties of Te-free, Sb-rich binary Ga-Sb, which has been known to possess extremely fast crystallization behavior. Non-isothermal and isothermal crystallization kinetics of amorphous Sb-rich Ga-Sb films were explored by temperature dependent electrical resistance measurements. The crystallization temperature (183 to 261 degrees C) increases with decreasing Sb content (91 to 77 at%). The activation energy and rate-factor vary with Sb contents and reach the maximum at Ga19Sb81. The kinetic exponent is smaller than 1.5 at Sb < 85 at% denoting that the mechanism is one-dimensional crystal-growth from nuclei. The temperature corresponding to 10-year data-retention, evaluated from films, is 180 degrees C (Ga19Sb81) and 137 degrees C (Ga13Sb87), respectively. We verified memory performance using test-devices made of Ga16Sb84 working at voltages with 100 ns pulse-width.  相似文献   

10.
Phase-change memory materials have stimulated a great deal of interest although the size-dependent behaviors have not been well studied due to the lack of method for producing their nanoscale structures. We report the synthesis and characterization of GeTe and Sb(2)Te(3) phase-change nanowires via a vapor-liquid-solid growth mechanism. The as-grown GeTe nanowires have three different types of morphologies: single-crystalline straight and helical rhombohedral GeTe nanowires and amorphous curly GeO(2) nanowires. All the Sb(2)Te(3) nanowires are single-crystalline.  相似文献   

11.
The self-assembly of Ge(1)Sb(2)Te(4) nanowires (NWs) for phase change memories application was achieved by metal organic chemical vapor deposition, catalyzed by Au nanoislands in a narrow range of temperatures and deposition pressures. In the optimized conditions of 400 °C, 50 mbar, the NWs are Ge(1)Sb(2)Te(4) single hexagonal crystals. Phase change memory switching was reversibly induced by nanosecond current pulses through metal-contacted NWs with threshold voltage of about 1.35 V.  相似文献   

12.
Ge2Sb2Tes is the most widely utilized chalcogenide phase-change material for non-volatile photonic applications,which undergoes amorphous-cubic and cubic-hexagonal phase transition under external excitations.However,the cubic-hexagonal optical contrast is negligible,only the amorphous-cubic phase transition of Ge2Sb2Te5 is available.This limits the optical switching states of traditional active dis-plays and absorbers to two.We find that increasing structural disorder difference of cubic-hexagonal can increase optical contrast close to the level of amorphous-cubic.Therefore,an amorphous-cubic-hexagonal phase transition with high optical contrast is realized.Using this phase transition,we have developed display and absorber with three distinct switching states,improving the switching perfor-mance by 50%.Through the combination of first-principle calculations and experiments,we reveal that the key to increasing structural disorder difference of amorphous,cubic and hexagonal phases is to intro-duce small interstitial impurities(like N)in Ge2Sb2Tes,rather than large substitutional impurities(like Ag)previously thought.This is explained by the formation energy and lattice distortion.Based on the impurity atomic radius,interstitial site radius and formation energy,C and B are also potential suit-able impurities.In addition,introducing interstitial impurities into phase-change materials with van der Waals gaps in stable phase such as GeSb4Te7,GeSb2Te4,Ge3Sb2Te6,Sb2Te3 will produce high optical con-trast amorphous-metastable-stable phase transition.This research not only reveals the important role of interstitial impurities in increasing the optical contrast between metastable-stable phases,but also proposes varieties of candidate matrices and impurities.This provides new phase-change materials and design methods for non-volatile optical devices with multi-switching states.  相似文献   

13.
We have investigated heat transfer characteristics of a nano-scale phase-change random access memory (PRAM) cell using finite element method (FEM) simulation. Our PRAM cell is based on ternary chalcogenide alloy, Ge2Sb2Te5 (GST), which is used as a recording layer. For contact area of 100 x 100 nm2, simulations of crystallization and amorphization processes were carried out. Physical quantities such as electric conductivity, thermal conductivity, and specific heat were treated as temperature-dependent parameters. Through many simulations, it is concluded that one can reduce set current by decreasing both electric conductivities of amorphous GST and crystalline GST, and in addition to these conditions by decreasing electric conductivity of molten GST one can also reduce reset current significantly.  相似文献   

14.
Nonvolatile phase-change memory devices with 500 nm contact hole based on In2Te3 were successfully fabricated by using focused ion beam, pulsed laser deposition, and dc magnetic sputtering techniques. In2Te3 films were characterized by using differential thermal analysis, X-ray diffraction, and UV–vis diffuse absorption spectroscopy, respectively. The devices can be switched between high and low resistance states repeatedly with the programmed voltage pulses. The reset operation (crystalline to amorphous) was done by the voltage pulse with a magnitude of 3.5 V and a duration of 30 ns, and the set operation (amorphous to crystalline) was done by the voltage pulse with a magnitude of 1.4 V and a duration of 100 ns. A dynamic resistance switching ratio (OFF/ON ratio) of 3.2 × 103 has been obtained.  相似文献   

15.
We report laser-induced crystallization behavior of binary Sb-Te and ternary Ge-doped eutectic Sb70Te30 thin film samples in a typical quadrilayer stack as used in phase-change optical disk data storage. Several experiments have been conducted on a two-laser static tester in which one laser operating in pulse mode writes crystalline marks on amorphous film or amorphous marks on crystalline film, while the second laser operating at low-power cw mode simultaneously monitors the progress of the crystalline or amorphous mark formation in real time in terms of the reflectivity variation. The results of this study show that the crystallization kinetics of this class of film is strongly growth dominant, which is significantly different from the crystallization kinetics of stochiometric Ge-Sb-Te compositions. In Sb-Te and Ge-doped eutectic Sb70Te30 thin-film samples, the crystallization behavior of the two forms of amorphous states, namely, as-deposited amorphous state and melt-quenched amorphous state, remains approximately same. We have also presented experiments showing the effect of the variation of the Sb/Te ratio and Ge doping on the crystallization behavior of these films.  相似文献   

16.
Phase-change optical memories are based on the astonishingly rapid nanosecond-scale crystallization of nanosized amorphous 'marks' in a polycrystalline layer. Models of crystallization exist for the commercially used phase-change alloy Ge(2)Sb(2)Te(5) (GST), but not for the equally important class of Sb-Te-based alloys. We have combined X-ray diffraction, extended X-ray absorption fine structure and hard X-ray photoelectron spectroscopy experiments with density functional simulations to determine the crystalline and amorphous structures of Ag(3.5)In(3.8)Sb(75.0)Te(17.7) (AIST) and how they differ from GST. The structure of amorphous (a-) AIST shows a range of atomic ring sizes, whereas a-GST shows mainly small rings and cavities. The local environment of Sb in both forms of AIST is a distorted 3+3 octahedron. These structures suggest a bond-interchange model, where a sequence of small displacements of Sb atoms accompanied by interchanges of short and long bonds is the origin of the rapid crystallization of a-AIST. It differs profoundly from crystallization in a-GST.  相似文献   

17.
We report the first demonstration of a magnetoresistive random access memory (MRAM) circuit incorporating MgO-based magnetic tunnel junction (MTJ) material for higher performance. We compare our results to those of AlOx-based devices, and we discuss the MTJ process optimization and material changes that made the demonstration possible. We present data on key MTJ material attributes for different oxidation processes and free-layer alloys, including resistance distributions, bias dependence, free-layer magnetic properties, interlayer coupling, breakdown voltage, and thermal endurance. A tunneling magnetoresistance (TMR) greater than 230% was achieved with CoFeB free layers and greater than 85% with NiFe free layers. Although the TMR with NiFe is at the low end of our MgO comparison, even this MTJ material enables faster access times, since its TMR is almost double that of a similar structure with an AlO$_ x$barrier. Bit-to-bit resistance distributions are somewhat wider for MgO barriers, with sigma about 1.5% compared to about 0.9% for AlO$_ x$. The read access time of our 4 Mb toggle MRAM circuit was reduced from 21 ns with AlO$_ x$to a circuit-limited 17 ns with MgO.  相似文献   

18.
Jung Y  Nam SW  Agarwal R 《Nano letters》2011,11(3):1364-1368
By combining high-resolution transmission electron microscopy (HRTEM) characterization and electrical measurements on a unique device platform, we study the reversible electrically-driven phase-change characteristics of self-assembled Ge(2)Sb(2)Te(5) nanowires. Detailed HRTEM analyses are used to correlate and understand the effect of full and intermediate structural transformations on the measured electrical properties of the nanowire devices. The study demonstrates that our unique approach has the potential to provide new information regarding the dynamic structural and electrical states of phase-change materials at the nanoscale, which will aid the design of future phase-change memory devices.  相似文献   

19.
Lee SH  Jung Y  Agarwal R 《Nano letters》2008,8(10):3303-3309
By combining electron microscopy and size-dependent electrical measurements, we demonstrate surface-induced heterogeneous nucleation-dominant mechanism for recrystallization of amorphous phase-change Ge2Sb2Te5 nanowires. Heterogeneous nucleation theory quantitatively predicts the nucleation rates that vary by 5 orders of magnitude from 190 to 20 nm lengthscales. Our work demonstrates that increasing the surface-to-volume ratio of nanowires has two effects: lowering of the activation energy barrier due to phonon instability and providing nucleation sites for recrystallization. The systematic study of the effect of surface in phase-change behavior is critical for understanding nanoscale phase-transitions and design of nonvolatile memory devices.  相似文献   

20.
激光致溅射沉积Ge2Sb2Te5薄膜的结晶行为研究   总被引:2,自引:0,他引:2  
利用XRD研究了激光致溅射沉积Ge2Sb2Te5薄膜的结晶行为,研究发现,与热致相变不同的是,激光致相变只发生从非晶态到FCC晶态结构的转变,从FCC与HCP的结构转变不再发生,这有利于提高相变光盘的信噪比。Ge2Sb2Te5薄膜的结晶程度受初始化功率和转速的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号