首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As part of a feasibility study into the use of novel electron detectors for X-ray photoelectron emission microscopes (XPEEM), we have characterised the imaging performance of a back-illuminated monolithic active pixel sensor (MAPS) operating under both integrating and counting modes for electrons in the energy range 10–20 keV. For integrating mode, we present the detective quantum efficiency (DQE), which shows marked improvements over conventional indirect detectors based on microchannel plates. We also present the modulation transfer function (MTF) and noise power spectrum (NPS), again demonstrating significantly improved performance. For counting mode, we present the quantum efficiency (QE) as a function of incident electron energy. We have evaluated the charge collection efficiency (CCE) and we thereby demonstrate the presence of a ~200 nm thick dead layer that is linked with reduced CCE at low electron energies. Based on our findings, we believe that the MAPS technology is well matched to future XPEEM instruments using aberration correction.  相似文献   

2.
Growth of Ag nanoislands on air-oxidized Si(001), (111) and (110) surfaces has been investigated by reflection high energy electron diffraction (RHEED), scanning tunneling microscopy (STM) and cross-sectional transmission electron microscopy. We have shown that the oriented nanocrystalline Ag, similar to the epitaxial growth of Ag on clean Si surfaces, can be grown on oxide-covered Si surfaces. A thin oxide layer (~ 2-3 nm thick) is formed on ultra-high vacuum (UHV)-cleaned Si surfaces via exposure of the clean reconstructed surface to air. Deposition of Ag was carried out under UHV at different substrate temperatures and monitored by RHEED. RHEED results reveal that Ag deposition at room temperature leads to the growth of randomly oriented Ag islands while, in spite of the presence of the oxide layer between Ag islands and Si, preferred orientations with an epitaxial relationship with the substrate evolve when Ag is deposited at higher substrate temperatures. STM images of the oxidized surfaces, prior to Ag deposition, apparently do not show any order. However, Fourier transforms of STM images show the presence of a short range order on the oxidized surface following the unit cells of the underlying reconstructed Si surface. It is intriguing that Ag nanoislands follow an epitaxial orientational relationship with the substrate in spite of the presence of a 2-3 nm thick oxide layer between Ag and Si. Apparently, the short range order existing on the oxide surface influences the orientation of the Ag nanoislands.  相似文献   

3.
Pulsed Nd:YAG laser was used to irradiate Si substrate immersed in AgN03 ethylene glycol solution to deposit Ag films along the lines scanned by laser on the substrate, which is a photo-thermal decomposing process. The decomposed Ag atoms congregate and form polycrystalline Ag particles. The Ag concentration changes greatly with the total laser energy^4absorbed by substrate. Transmission electron microscopy (TEM) observation shows the Ag particles are inlaid in the Si substrate. Auger electron spectrum (AES) shows that the Ag concentration decreases with the increase of the sputtering depth, and there is no oxygen element on the surface of the deposited Ag films.  相似文献   

4.
通过实验与有限元(FDTD)模拟系统研究了不同粒径尺寸的Ag纳米颗粒在P(100)Si表面刻蚀过程中等离激元光散射增强对刻蚀孔形貌的影响。SEM结果表明,刻蚀孔由与粒径尺寸接近的垂直孔演化为一种上大下小的火炬状形貌特征孔,该孔的直径与纳米颗粒尺寸散射半径相仿。模拟不同粒径的Ag纳米颗粒进入刻蚀孔后的光散射特征,证实了Ag纳米颗粒等离激元散射对刻蚀孔初期形成的重要作用。分析表明,基于光照条件下电子-空穴的激发特征,刻蚀孔的形貌主要依赖Ag纳米颗粒等离激元散射的光增强,即通过改变入射光频率以及Ag纳米颗粒粒径可以有效地调控Si表面形貌特征。Ag纳米颗粒等离激元光散射增强技术在Si基太阳能电池、发光二极管(LED)器件等领域有潜在应用前景。  相似文献   

5.
The substrate generation/tip collection (SG/TC) mode of scanning electrochemical microscopy (SECM) coupled with linear voltammetry is proposed as a way to quantify reaction intermediates generated in the solution at small substrates (100 mum diameter). The collection efficiency (CE) for SG/TC mode depends on the collector tip radius (a), the tip/substrate distance (d), and the size of the insulating glass sheath surrounding the collector tip (RG). In this work, we present experimental and simulated calibration CE values for different SG/TC geometries. Results of digital simulations in axial 2-D symmetry with the tip approaching a planar substrate are shown and fit experimental results obtained using ferrocenemethanol as a redox mediator very well. This model assumes that the mediator reacts under stationary-state conditions and undergoes diffusion-controlled electron transfer without any heterogeneous or homogeneous kinetic complications. Empirical equations for all SG/TC geometries reported here are provided as a convenient way to predict the maximum CE value for any given distance within the calibration range. Hydrogen peroxide quantification during the oxygen reduction reaction (ORR) at a Hg on Au electrode in acid pH was carried out using the SG/TC mode of SECM to demonstrate the utility of this technique in determining the number of electrons transferred (n) in the ORR. The results (n = 2.12-2.19) clearly point out the predominance of the two-electron pathway over the four-electron pathway when ORR takes place at this electrode material. Therefore, this work presents a powerful alternative to the rotating ring-disk electrode (RRDE) as means of obtaining mechanistic information by calculating the number of electrons transferred during an electrochemical reaction.  相似文献   

6.
We present a systematic study of the current-voltage characteristics and electroluminescence of gallium nitride (GaN) nanowire on silicon (Si) substrate heterostructures where both semiconductors are n-type. A novel feature of this device is that by reversing the polarity of the applied voltage the luminescence can be selectively obtained from either the nanowire or the substrate. For one polarity of the applied voltage, ultraviolet (and visible) light is generated in the GaN nanowire, while for the opposite polarity infrared light is emitted from the Si substrate. We propose a model, which explains the key features of the data, based on electron tunnelling from the valence band of one semiconductor into the conduction band of the other semiconductor. For example, for one polarity of the applied voltage, given a sufficient potential energy difference between the two semiconductors, electrons can tunnel from the valence band of GaN into the Si conduction band. This process results in the creation of holes in GaN, which can recombine with conduction band electrons generating GaN band-to-band luminescence. A similar process applies under the opposite polarity for Si light emission. This device structure affords an additional experimental handle to the study of electroluminescence in single nanowires and, furthermore, could be used as a novel approach to two-colour light-emitting devices.  相似文献   

7.
A novel discrete model is proposed for studying the aggregation process on the surface of bilayer films. The present modelling is based on a two-dimensional biased random walk model. Simulation results based on the model exhibit the interesting aggregation dynamics to reproduce the experimental results of scanning electron microscope observation of the pattern evolution of Si aggregates on the free surface of the upper Ag-layer during annealing of Ag/Si bilayer film on the SiO2 substrate.  相似文献   

8.
We fabricated the vertically-aligned zinc oxide (ZnO)/silicon (Si) double nanostructures by simple processes using the metal-assisted chemical etching and a subsequent hydrothermal synthesis, and their optical property was investigated. For efficient antireflection characteristics, Si nanostructures were optimized by changing the size of the dewetted silver (Ag) at different etching times. The thermally dewetted Ag nanoparticles or semi-island films as metal catalysts were controlled by the Ag film thickness and dewetting temperature. To form the ZnO/Si double nanostructures, ZnO nanorods were synthesized on the chemically etched Si nanostructures using a thin sputtered ZnO seed layer. The grown ZnO nanorod arrays (NRAs) exhibited good crystallinity and further reduced the surface reflection due to their antireflective property. The ZnO/Si double nanostructures showed the increased peak intensity of X-ray diffraction as well as the significantly reduced solar weight reflectance of 6.05% compared to 11.71% in the ZnO NRAs on the flat Si substrate. Also, the enhanced antireflection property of ZnO/Si double nanostructures was theoretically analyzed by performing the rigorous coupled wave analysis simulation.  相似文献   

9.
A Monte Carlo program is developed to investigate the kinetically excited electrons passing through a realistic Ag-Al2O3-Al junction when Ar+ ions impact on the top Ag layer. The program includes excitation of the target electrons (by projectile ions, recoiling target atoms and fast primary electrons) and subsequent transport of these excited electrons from Ag to bottom Al layer of the metal-insulator-metal (MIM) junction. The calculated tunneling electron yield is consistent with the recently reported experimental results. The simulation, however, enables the calculation of partial tunneling electron yields of the electrons excited by the projectile ions, recoil atoms and cascade electrons, the depth distribution of the electron excitation points in the MIM junction and energy distribution of the tunneling electrons. Our calculation showed that the electrons excited by fast cascade electrons are the major contributor to the tunneling electron yield while the direct contribution of projectile ions to tunneling electron yield is evident only at the projectile energies greater than 10 keV. The tunneling electrons have their origin close to the bottom end of the Ag layer and bulk of the tunneling electrons have energies around 2 eV.  相似文献   

10.
The slow deposition of nickel vapour onto a clean Ag(111) substrate was observed by quantitative Auger electron spectroscopy and by low energy electron diffraction. At ambient substrate temperature the variations of the Auger signals as a function of time, at constant vapour flux, indicate a “simultaneous multilayer” growth mode in which each successive nickel layer begins to grow before completion of the preceding layer. A model of this process is described. At a higher temperature (≈ 520 K) a different behaviour is observed, probably owing to the diffusion of silver into the nickel layer. A comparison is made with results obtained by equilibrium segregation of radioactive nickel.  相似文献   

11.
Metal-semiconductor composite Ag-Si nanostructures, including Ag/Si core-shell nanoparticles, have been synthesized for the first time by a high-efficiency evaporation/condensation method using relativistic electron beam. In the Ag/Si core-shell nanoparticles, the core is crystalline, while the shell consists of amorphous silicon. It is found that the synthesis of these particles requires taking into account the difference in the saturated vapor pressures of evaporated components. The dependences of the particle size on the electron beam power at the evaporation stage and the pressure of argon at the condensation stage have been studied. It is established that (i) the main process of Ag/Si nanoparticle formation is coagulation and (ii) the Si shell formation decreases the size of particles.  相似文献   

12.
An electron accelerating unit is proposed for use in streak image tubes (SITs). An SIT with this new accelerating unit was simulated using the Monte Carlo method. The simulation results show that the accelerating unit improves both the spatial and temporal resolution. Compared to a traditional SIT, the transit time spread for electrons in the cathode-to-mesh region is reduced from 247 to 162 fs, the line width of the electron beam on the image surface is reduced from 42.7 to 26.1 μm, and the temporal resolution is improved from 515 to 395 fs.  相似文献   

13.
耦合腔行波管多级降压收集极的模拟设计   总被引:1,自引:0,他引:1  
本文中较全面地讨论了多级降压收集极的物理模型.通过分析3个工作频率点高频输出端的电子注特性来设计多级降压收集极:借助电子注层流性参量,对带有再聚焦磁场的散群聚区进行优化,得到磁场参量的初始值;运用电子轨迹等效电位图,确定各电极的初步电位,通过收集极区结构和电极电位的优化得到较高的收集极效率;通过收集极的全面优化使收集极效率得到了进一步的提高;在考虑二次电子发射情况下,对收集极结构和电极电位进行优化,在保证收集极效率的情况下使二次电子回流率为零.模拟结果表明:借助电子注层流参量设计出带有再聚焦磁场的散群聚区使电子轨迹层流性得到较大改善;合理的结构和电极电位能得到较高的收集极效率;二次电子发射对收集极效率影响较大,合理的调节外凸锥形电极的倾角能避免二次电子回流.此设计运用于一耦合腔行波管收集极的模拟计算,达到了良好的效果.  相似文献   

14.
Inkjet-printed Ag metallization is a promising method of forming front-side contacts on Si solar cells due to its non-contact printing nature and fine grid resolution. However, conventional Ag inks are unable to punch through the SiN(x) anti-reflection coating (ARC) layer on emitter Si surfaces. In this study, a novel formulation of Ag ink is examined for the formation of fire-through contacts on a SiN(x)-coated Si substrate using the single-step printing of Ag ink, followed by rapid thermal annealing at 800 degrees C. In order to formulate Ag inks with fire-through contact formation capabilities, a liquid etching agent was first formulated by dissolving metal nitrates in an organic solvent and then mixing the resulting solution with a commercial Ag nanoparticle ink at various volume ratios. During the firing process, the dissolved metal nitrates decomposed into metal oxides and acted in a similar manner to the glass frit contained in Ag pastes for screen-printed Ag metallization. The newly formulated ink with a 1 wt% loading ratio of metal oxides to Ag formed finely distributed Ag crystallites on the Si substrate after firing at 800 degrees C for 1 min.  相似文献   

15.
Crystal orientation changes of Ag thin films due to the tribo-assisted recrystallization have been studied using grazing incidence X-ray diffraction with synchrotron radiation. After preparation of an Si(111) √3 × √3-Ag surface, a 5-nm-thick Ag film was deposited on the surface at the substrate temperature of 303 K in an ultra-high vacuum chamber. The friction experiments were carried out using a diamond pin-on-plate type tribometer just after the Ag deposition in the same UHV chamber. We found that the coefficient of friction of the Ag films on the Si(111) √3 × √3-Ag surface decreases from 0.07 to 0.03, with increasing reciprocal sliding cycles. In synchronization with the coefficient change, Ag{100} grains are gradually disappearing. As a result, the Ag{111} grains cover the entire surface after 50 sliding cycles. Moreover, we found that the domain size of the Ag{111} grains increases with increasing reciprocal sliding cycles by measuring the rocking curve width. These results directly show that the Ag(111) plane is the sliding plane of friction and the coefficient of friction of Ag films is determined by the fraction of the Ag(111) grains in the Ag films. Moreover, to clarify the reaction between the Ag film and the Si substrate due to the tribo-assisted recrystallization, the substrate strain has been studied by an extremely asymmetric X-ray diffraction technique using synchrotron radiation.  相似文献   

16.
We investigate the activation energy and carrier dynamics of CdTe/ZnTe quantum dots (QDs) grown on GaAs and Si substrates. The activation energy of the electrons confined in QDs on the Si substrate, as obtained from the temperature-dependent photoluminescence (PL) spectra, is lower than that of electrons confined in QDs on the GaAs substrate. Time-resolved PL measurements used to study the carrier dynamics show shorter exciton lifetimes for QDs on the Si substrate. This behavior is attributed to the fact that defects and dislocations in the QDs on the Si substrate provide nonradiative channels.  相似文献   

17.
The crystal structure of silver clusters formed on the surface of a Si(100)−2×1 single crystal by annealing of a thin Ag film deposited on a slightly heated crystal was studied by diffraction of quasielastically scattered medium-energy electrons. Simulation of the diffraction pattern obtained at 2 keV showed that the silver islands formed on silicon have an ordered structure corresponding to bulk silver and a fixed orientation Ag(100) ∥ Si(100) and [100]Ag∥ [100]Si relative to the substrate. Pis’ma Zh. Tekh. Fiz. 24, 51–56 (April 12, 1998)  相似文献   

18.
Adsorption of Ag on Pt(100) surfaces including the multilayer regime has been studied using the low energy electron diffraction, X-ray photoelectron spectroscopy, ultraviolet electron spectroscopy, and thermal desorption spectroscopy methods. Deposition of Ag sub-monolayers on Pt(100) below 300 K leads to the formation of three-dimensional crystallites, which decompose into a pseudomorphic layer upon annealing above ≈ 350 K. Deposition of Ag multilayers proceeds along the same growth mode. Adsorbed Ag lifts the hex reconstruction of the Pt(100) surface. Up to an Ag coverage of ≈ 0.8, Ag desorbs according to a zero-order desorption rate law, Edes = 322 kJ mol−1. This desorption order is interpreted by the presence of a mixed Pt/Ag layer on top of the square Pt(100) substrate into which all excess Pt atoms from the hex surface are expelled upon lifting of the reconstruction. Therefore, Ag desorption reflects the decomposition of a monolayer-confined Ag-Pt alloy. Between Ag coverages of Θ ≈ 0.7 and Θ = 1, first-order desorption is observed, while above Θ = 1 zero-order desorption is again observed (Edes = 288 kJ mol−1) A 760 K annealed Ag monolayer suffices to suppress CO adsorption. XP spectra reveal a binding energy shift of the Ag 3d5/2 level from 367.5 eV (monolayer) to 368.1 eV (thick multilayer). In UP spectra an Ag/Pt(100) interface state at 1.5 eV below the Fermi level is observed, which is interpreted to stem from Pt 5d electrons. Low-temperature deposited Ag sub-monolayers exhibit in UP spectra a broad 4d band structure, which collapses upon annealing into two extremely narrow Ag 4d emission peaks, ΔE ≈ 0.2 eV, at 4.6 eV and 4.8 eV. They are interpreted as emission from chain-like structures of Ag atoms in the mixed Pt/Ag layer structures which are formed in the annealing process.  相似文献   

19.
《Thin solid films》2006,515(2):712-715
We report on a magnetic imaging study of the Fe/NiO/Fe(001) trilayer structure, by means of X-ray photoemission electron microscopy (XPEEM) and spin-polarised low-energy electron microscopy (SPLEEM). Two different magnetic couplings between the Fe layers are observed depending on the NiO thickness being greater or smaller than a critical value. Very small magnetic domains and domain walls are observed in the top Fe layer. They are dramatically smaller than those observed in the Fe substrate, and have a convoluted topology. Furthermore they seem to be unstable with respect to an applied magnetic field for any NiO thickness except that corresponding to the transition between the different coupling regimes. The phenomenology of such magnetic nano-structures and the dependence of the magnetic behaviour of the layered structure on the NiO spacer thickness are discussed on the basis of the experimental results and of state-of-the-art theoretical models.  相似文献   

20.
Growth of Ag films on Br- and H-passivated Si(111) surfaces and the annealing behaviour have been investigated by Rutherford backscattering spectrometry, scanning electron microscopy and photoemission electron microscopy techniques. Upon annealing the phenomenon of thermal grooving was observed in the Ag films. Depending on the annealing temperature, at an intermediate annealing time Ag depletion (evaporation) from the grain boundaries produces fractal patterns of Ag-depleted regions. Continued annealing eventually produces a percolated network of Ag-depleted regions (thermal grooves) along the grain boundaries and isolated Ag grains appear as the depth of the grooves reaches the substrate. For the fractal structures produced by thermal grooving, the fractal dimension has been estimated to be 1.60 ± 0.04. Observation of a fractal pattern in thermal grooving was not hitherto reported. A thorough analysis of the experimental results has been carried out in the context of current theories. These theories are inadequate to describe the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号