首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The tetraspanin CD9 is considered a metastasis suppressor in many cancers, however its role is highly debated. Currently, little is known about CD9 prognostic value in cutaneous melanoma. Our aim was to analyse CD9 expression in melanocytic nevi and primary cutaneous melanomas through immunohistochemistry and immunofluorescence approaches to determine its correlation with invasiveness and metastatic potential. CD9 displayed homogeneous staining in all melanocytic nevi. In contrast, it showed a complete loss of reactivity in all thin melanomas. Interestingly, CD9 was re-expressed in 46% of intermediate and thick melanomas in small tumor clusters predominantly located at sites of invasion near or inside the blood or lymphatic vessels. The most notable finding is that all CD9 stained melanomas presented sentinel node positivity. Additionally, a direct association between CD9 expression and presence of distant metastasis was reported. Finally, we confirm that CD9 expression is consistent with an early protective role against tumorigenesis, however, our data endorse in melanoma a specific function of CD9 in vascular dissemination during late tumor progression. The presence of CD9 hotspots could be essential for melanoma cell invasion in lymphatic and endothelial vessels. CD9 could be a valid prognostic factor for lymph node metastasis risk.  相似文献   

2.
Background: Ovarian cancer (OC) is one of the most lethal cancers in women. The active form of vitamin D3, 1,25-dihydroxyvitamin D3 (1,25D3, calcitriol) has anticancer activity in several cancers, including ovarian cancer, but the required pharmacological doses may cause hypercalcemia. We hypothesized that newly developed, low calcemic, vitamin D analogs (an1,25Ds) may be used as anticancer agents instead of calcitriol in ovarian cancer cells. Methods: We used two patient-derived high-grade serous ovarian cancer (HGSOC) cell lines with low (13781) and high (14433) mRNA expression levels of the gene encoding 1,25-dihydroxyvitamin D3 24-hydroxylase CYP24A1, one of the main target genes of calcitriol. We tested the effect of calcitriol and four structurally related series of an1,25Ds (PRI-1906, PRI-1907, PRI-5201, PRI-5202) on cell number, viability, the expression of CYP24A1, and the vitamin D receptor (VDR). Results: CYP24A1 mRNA expression increased in a concentration-dependent manner after treatment with all compounds. In both cell lines, after 4 h, PRI-5202 was the most potent analog (in 13781 cells: EC50 = 2.98 ± 1.10 nmol/L, in 14433 cells: EC50 = 0.92 ± 0.20 nmol/L), while PRI-1907 was the least active one (in 13781 cells: EC50 = n/d, in 14433 cells: EC50 = n/d). This difference among the analogs disappeared after 5 days of treatment. The 13781 cells were more sensitive to the an1,25Ds compared with 14433 cells. The an1,25Ds increased nuclear VDR levels and reduced cell viability, but only in the 13781 cell line. Conclusions: The an1,25Ds had different potencies in the HGSOC cell lines and their efficacy in increasing CYP24A1 expression was cell line- and chemical structure-dependent. Therefore, choosing sensitive cancer cell lines and further optimization of the analogs’ structure might lead to new treatment options against ovarian cancer.  相似文献   

3.
4.
Structurally similar double-point modified analogues of 1,25-dihydroxyvitamin D2 (1,25D2) were screened in vitro for their pro-differentiating activity against the promyeloid cell line HL60. Their affinities towards human full length vitamin D receptor (VDR) and metabolic stability against human vitamin D 24-hydroxylase (CYP24A1) were also tested. The analogues (PRI-1730, PRI-1731, PRI-1732, PRI-1733 and PRI-1734) contained 5,6-trans modification of the A-ring and of the triene system, additional hydroxyl or unsaturation at C-22 in the side chain and reversed absolute configuration (24-epi) at C-24 of 1,25D2. As presented in this paper, introduction of selected structural modifications simultaneously in two distinct parts of the vitamin D molecule resulted in a divergent group of analogues. Analogues showed lower VDR affinity in comparison to that of the parent hormones, 1,25D2 and 1,25D3, and they caused effective HL60 cell differentiation only at high concentrations of 100 nM and above. Unexpectedly, introducing of a 5,6-trans modification combined with C-22 hydroxyl and 24-epi configuration switched off entirely the cell differentiation activity of the analogue (PRI-1734). However, this analogue remained a moderate substrate for CYP24A1, as it was metabolized at 22%, compared to 35% for 1,25D2. Other analogues from this series were either less (12% for PRI-1731 and PRI-1733) or more (52% for PRI-1732) resistant to the enzymatic deactivation. Although the inactive analogue PRI-1734 failed to show VDR antagonism, when tested in HL60 cells, its structure might be a good starting point for our design of a vitamin D antagonist.  相似文献   

5.
Deregulated melanogenesis is involved in melanomagenesis and melanoma progression and resistance to therapy. Vitamin D analogs have anti-melanoma activity. While the hypercalcaemic effect of the active form of Vitamin D (1,25(OH)2D3) limits its therapeutic use, novel Vitamin D analogs with a modified side chain demonstrate low calcaemic activity. We therefore examined the effect of secosteroidal analogs, both classic (1,25(OH)2D3 and 25(OH)D3), and novel relatively non-calcemic ones (20(OH)D3, calcipotriol, 21(OH)pD, pD and 20(OH)pL), on proliferation, colony formation in monolayer and soft-agar, and mRNA and protein expression by melanoma cells. Murine B16-F10 and hamster Bomirski Ab cell lines were shown to be effective models to study how melanogenesis affects anti-melanoma treatment. Novel Vitamin D analogs with a short side-chain and lumisterol-like 20(OH)pL efficiently inhibited rodent melanoma growth. Moderate pigmentation sensitized rodent melanoma cells towards Vitamin D analogs, and altered expression of key genes involved in Vitamin D signaling, which was opposite to the effect on heavily pigmented cells. Interestingly, melanogenesis inhibited ligand-induced Vitamin D receptor translocation and ligand-induced expression of VDR and CYP24A1 genes. These findings indicate that melanogenesis can affect the anti-melanoma activity of Vitamin D analogs in a complex manner.  相似文献   

6.
The microsomal cytochrome P450 3A4 (CYP3A4) and mitochondrial cytochrome P450 24A1 (CYP24A1) hydroxylating enzymes both metabolize vitamin D and its analogs. The three-dimensional (3D) structure of the full-length native human CYP3A4 has been solved, but the respective structure of the main vitamin D hydroxylating CYP24A1 enzyme is unknown. The structures of recombinant CYP24A1 enzymes have been solved; however, from studies of the vitamin D receptor, the use of a truncated protein for docking studies of ligands led to incorrect results. As the structure of the native CYP3A4 protein is known, we performed rigid docking supported by molecular dynamic simulation using CYP3A4 to predict the metabolic conversion of analogs of 1,25-dihydroxyvitamin D2 (1,25D2). This is highly important to the design of novel vitamin D-based drug candidates of reasonable metabolic stability as CYP3A4 metabolizes ca. 50% of the drug substances. The use of the 3D structure data of human CYP3A4 has allowed us to explain the substantial differences in the metabolic conversion of the side-chain geometric analogs of 1,25D2. The calculated free enthalpy of the binding of an analog of 1,25D2 to CYP3A4 agreed with the experimentally observed conversion of the analog by CYP24A1. The metabolic conversion of an analog of 1,25D2 to the main vitamin D hydroxylating enzyme CYP24A1, of unknown 3D structure, can be explained by the binding strength of the analog to the known 3D structure of the CYP3A4 enzyme.  相似文献   

7.
8.
1,25-Dihydroxycholecalciferol, the hormonally active vitamin D3 metabolite, is known to exhibit therapeutic effects against breast cancer, mainly by lowering the expression of estrogen receptors and aromatase activity. Previously, the safety of the vitamin D active metabolite (24R)-1,24-dihydroxycholecalciferol (PRI-2191) and 1,25(OH)2D3 analog PRI-2205 was tested, and the in vitro activity of these analogs against different cancer cell lines was studied. We determined the effect of the two vitamin D compounds on anastrozole (An) activity against breast cancer based on antiproliferative activity, ELISA, flow cytometry, enzyme inhibition potency, PCR, and xenograft study. Both the vitamin D active metabolite and synthetic analog regulated the growth of not only estrogen receptor-positive cells (T47D and MCF-7, in vitro and in vivo), but also hormone-independent cancer cells such as SKBR-3 (HER-2-positive) and MDA-MB-231 (triple-negative), despite their relatively low VDR expression. Combined with An, PRI-2191 and PRI-2205 significantly inhibited the tumor growth of MCF-7 cells. Potentiation of the antitumor activity in combined treatment of MCF-7 tumor-bearing mice is related to the reduced activity of aromatase by both An (enzyme inhibition) and vitamin D compounds (switched off/decreased aromatase gene expression, decreased expression of other genes related to estrogen signaling) and by regulation of the expression of the estrogen receptor ERα and VDR.  相似文献   

9.
We have developed an in vitro system to easily examine the affinity for vitamin D receptor (VDR) and CYP24A1-mediated metabolism as two methods of assessing vitamin D derivatives. Vitamin D derivatives with high VDR affinity and resistance to CYP24A1-mediated metabolism could be good therapeutic agents. This system can effectively select vitamin D derivatives with these useful properties. We have also developed an in vivo system including a Cyp27b1-gene-deficient rat (a type I rickets model), a Vdr-gene-deficient rat (a type II rickets model), and a rat with a mutant Vdr (R270L) (another type II rickets model) using a genome editing method. For Cyp27b1-gene-deficient and Vdr mutant (R270L) rats, amelioration of rickets symptoms can be used as an index of the efficacy of vitamin D derivatives. Vdr-gene-deficient rats can be used to assess the activities of vitamin D derivatives specialized for actions not mediated by VDR. One of our original vitamin D derivatives, which displays high affinity VDR binding and resistance to CYP24A1-dependent metabolism, has shown good therapeutic effects in Vdr (R270L) rats, although further analysis is needed.  相似文献   

10.
There is increasing evidence that nerve growth factor (NGF) and its receptors, the neurotrophic receptor tyrosine kinase 1 (NTRK1/TrkA), the common neurotrophin receptor (NGFR/p75NTR) and the membrane receptor sortilin, participate in cancer growth. In melanoma, there have been some reports suggesting that NGF, TrkA and p75NTR are dysregulated, but the expression of the NGF precursor (proNGF) and its membrane receptor sortilin is unknown. In this study, we investigated the expression of NGF, proNGF, TrkA, p75NTR and sortilin by immunohistochemistry in a series of human tissue samples (n = 100), including non-cancerous nevi (n = 20), primary melanomas (n = 40), lymph node metastases (n = 20) and distant metastases (n = 20). Immunostaining was digitally quantified and revealed NGF and proNGF were expressed in all nevi and primary melanomas, and that the level of expression decreased from primary tumors to melanoma metastases (p = 0.0179 and p < 0.0001, respectively). Interestingly, TrkA protein expression was high in nevi and thin primary tumors but was strongly downregulated in thick primary tumors (p < 0.0001) and metastases (p < 0.0001). While p75NTR and sortilin were both expressed in most nevi and melanomas, there was no significant difference in expression between them. Together, these results pointed to a downregulation of NGF/ProNGF and TrkA in melanoma, and thus did not provide evidence to support the use of anti-proNGF/NGF or anti-TrkA therapies in advanced and metastatic forms of melanoma.  相似文献   

11.
Lumisterol (L3) is a stereoisomer of 7-dehydrocholesterol and is produced through the photochemical transformation of 7-dehydrocholesteol induced by high doses of UVB. L3 is enzymatically hydroxylated by CYP11A1, producing 20(OH)L3, 22(OH)L3, 20,22(OH)2L3, and 24(OH)L3. Hydroxylumisterols function as reverse agonists of the retinoic acid-related orphan receptors α and γ (RORα/γ) and can interact with the non-genomic binding site of the vitamin D receptor (VDR). These intracellular receptors are mediators of photoprotection and anti-inflammatory activity. In this study, we show that L3-hydroxyderivatives significantly increase the expression of VDR at the mRNA and protein levels in keratinocytes, both non-irradiated and after UVB irradiation. L3-hydroxyderivatives also altered mRNA and protein levels for RORα/γ in non-irradiated cells, while the expression was significantly decreased in UVB-irradiated cells. In UVB-irradiated keratinocytes, L3-hydroxyderivatives inhibited nuclear translocation of NFκB p65 by enhancing levels of IκBα in the cytosol. This anti-inflammatory activity mediated by L3-hydroxyderivatives through suppression of NFκB signaling resulted in the inhibition of the expression of UVB-induced inflammatory cytokines, including IL-17, IFN-γ, and TNF-α. The L3-hydroxyderivatives promoted differentiation of UVB-irradiated keratinocytes as determined from upregulation of the expression at the mRNA of involucrin (IVL), filaggrine (FLG), and keratin 14 (KRT14), downregulation of transglutaminase 1 (TGM1), keratins including KRT1, and KRT10, and stimulation of ILV expression at the protein level. We conclude that CYP11A1-derived hydroxylumisterols are promising photoprotective agents capable of suppressing UVB-induced inflammatory responses and restoring epidermal function through targeting the VDR and RORs.  相似文献   

12.
13.
Interleukin 33 (IL-33) belongs to the IL-1 family and is produced constitutively by epithelial and endothelial cells of various organs, such as the skin. It takes part in the maintenance of tissue homeostasis, repair, and immune response, including activation of Th2 lymphocytes. Its involvement in pathogenesis of several inflammatory diseases including psoriasis was also suggested, but this is not fully understood. The aim of the study was to investigate expression of IL-33 and its receptor, ST2, in psoriasis, and the effects of the active form of vitamin D (1,25(OH)2D3) on their expression in skin cells. Here we examined mRNA and protein profiles of IL-33 and ST2 in 18 psoriatic patients and healthy volunteers by qPCR and immunostaining techniques. Potential effects of 1,25(OH)2D3 and its receptor (VDR) on the expression of IL-33 and ST2 were tested in cultured keratinocytes, melanocytes, fibroblasts, and basal cell carcinoma cells. It was shown that 1,25(OH)2D3 effectively stimulated expression of IL-33 and its receptor ST2’s mRNAs in a time-dependent manner, in keratinocytes and to the lesser extends in melanocytes, but not in fibroblasts. Furthermore, the effect of vitamin D on expression of IL-33 and ST2 was VDR-dependent. Finally, we demonstrated that the expression of mRNA for IL-33 was mainly elevated in the psoriatic skin but not in its margin. Interestingly, ST2 mRNA was downregulated in psoriatic lesion compared to both marginal tissue as well as healthy skin. Our data indicated that vitamin D can modulate IL-33 signaling, opening up new perspectives for our understanding of the mechanism of vitamin D action in psoriasis therapy.  相似文献   

14.
The vitamin D hormone, 1α,25‐dihydroxyvitamin D3 [1,25‐(OH)2D3], exerts its hormonal effects predominantly on intestine, bone, and kidney, where it plays a crucial role in calcium and phosphorus homeostasis and bone mineralization. In addition to its classical actions, 1,25(OH)2D3 exerts pleiotropic effects in a wide variety of target tissues and cell types, often in an autocrine/paracrine fashion. These biological activities of 1,25(OH)2D3 have suggested a multitude of potential therapeutic applications for the vitamin D hormone in the treatment of hyperproliferative disorders (e.g. cancer and psoriasis), immune dysfunction (autoimmune diseases), and endocrine disorders (e.g. hyperparathyroidism). However, the calcemic effects induced by 1,25(OH)2D3—hypercalcemia, increased bone resorption, and soft tissue calcification—limit the use of the natural ligand in these clinical applications. Therefore, numerous 1,25(OH)2D3 analogues have been synthesized with the intent of producing therapeutic agents devoid of hypercalcemic and hyperphosphatemic side effects. To this aim, much attention has been focused on the development of 19‐nor‐vitamin D3 derivatives that lack the ring‐A exocyclic methylene group (C19). In this review, the 19‐nor‐1,25(OH)2D3 analogues are classified according to modifications made at the A‐ring, the side chain, or both the A‐ring and side chain, as well as other positions. The biological activities of these 19‐nor‐1,25(OH)2D3 analogues are summarized and their structure–activity relationships and binding features with the vitamin D receptor (VDR) are discussed.  相似文献   

15.
Vitamin D3 shows tumoristatic and anticancer effects by acting through the vitamin D receptor (VDR), while hydroxylation of 25-hydroxyvitamin D3 at position 1α by CYP27B1 is an essential step in its activation. The expression of both the VDR and CYP27B1 has been found in many normal and cancer tissues, but there is a lack of information about its expression in human bladder cancers. The aim of the present research was to examine whether the expression of the VDR and CYP27B1 in bladder cancer was related to the prognostic markers and disease outcome. We analyzed VDR and CYP27B1 in samples of tumor and normal tissues obtained from 71 urinary bladder cancer patients. The highest VDR immunostaining was found in normal epithelium and was significantly lower in bladder cancer cells (p < 0.001 with Mann–Whitney U test). VDR expression was lowest in more advanced (pT2b–pT4) (p = 0.005 with Mann–Whitney U test) and metastasizing cancers (p < 0.05 and p = 0.004 with Mann–Whitney U test for nuclear and cytoplasmic VDR immunostaining, respectively). The lack of cytoplasmic and nuclear VDR was also related to shorter overall survival (for cytoplasmic VDR immunolocalization 13.3 vs. 55.3 months of survival, HR = 1.92, p = 0.04 and for nuclear VDR immunostaining 13.5 vs. 55.3 months of survival, HR = 2.47, p = 0.002 with Mantel-Cox test). In cases with the lack of high cytoplasmic VDR staining the non-classic differentiations (NDs) was observed in higher percentage of tumor area. CYP27B1 expression was lower in cancer cells than in normal epithelial cells (p = 0.03 with Mann–Whitney U test), but its expression did not correlate with tumor stage (pT), metastasizing, grade, mitotic activity or overall survival. In conclusion, expression of the VDR and CYP27B1 are deregulated in urothelial bladder cancers. Although our results showing a relationship between the decreased VDR expression and prognostic markers and survival time indicate potential usefulness of VDR as a new indicator of a poorer prognosis, further studies are needed in different patient cohorts by independent groups to validate this hypothesis. We also suggest that vitamin D-based therapies may represent an adjuvant strategy in treatment for bladder cancers expressing VDR.  相似文献   

16.
Vitamin D plays a crucial role in regulation of the immune response. However, treatment of autoimmune diseases with 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] doses sufficient to be effective is prohibitive due to its calcemic and toxic effects. We use the collagen-induced arthritis (CIA) model to analyze the efficacy of the noncalcemic analog of vitamin D, 20S-hydroxyvitamin D3 [20S(OH)D3], as well as 1,25(OH)2D3, to attenuate arthritis and explore a potential mechanism of action. Mice fed a diet deficient in vitamin D developed a more severe arthritis characterized by enhanced secretion of T cell inflammatory cytokines, compared to mice fed a normal diet. The T cell inflammatory cytokines were effectively suppressed, however, by culture of the cells with 20S(OH)D3. Interestingly, one of the consequences of culture with 1,25(OH)2D3 or 20S(OH)D3, was upregulation of the natural inhibitory receptor leukocyte associated immunoglobulin-like receptor-1 (LAIR-1 or CD305). Polyclonal antibodies which activate LAIR-1 were also capable of attenuating arthritis. Moreover, oral therapy with active forms of vitamin D suppressed arthritis in LAIR-1 sufficient DR1 mice, but were ineffective in LAIR-1−/− deficient mice. Taken together, these data show that the effect of vitamin D on inflammation is at least, in part, mediated by LAIR-1 and that non-calcemic 20S(OH)D3 may be a promising therapeutic agent for the treatment of autoimmune diseases such as Rheumatoid Arthritis.  相似文献   

17.
A high prevalence of vitamin D (calcidiol) serum deficiency has been described in several autoimmune diseases, including multiple sclerosis (MS), rheumatoid arthritis (AR), and systemic lupus erythematosus (SLE). Vitamin D is a potent immunonutrient that through its main metabolite calcitriol, regulates the immunomodulation of macrophages, dendritic cells, T and B lymphocytes, which express the vitamin D receptor (VDR), and they produce and respond to calcitriol. Genetic association studies have shown that up to 65% of vitamin D serum variance may be explained due to genetic background. The 90% of genetic variability takes place in the form of single nucleotide polymorphisms (SNPs), and SNPs in genes related to vitamin D metabolism have been linked to influence the calcidiol serum levels, such as in the vitamin D binding protein (VDBP; rs2282679 GC), 25-hydroxylase (rs10751657 CYP2R1), 1α-hydroxylase (rs10877012, CYP27B1) and the vitamin D receptor (FokI (rs2228570), BsmI (rs1544410), ApaI (rs7975232), and TaqI (rs731236) VDR). Therefore, the aim of this comprehensive literature review was to discuss the current findings of functional SNPs in GC, CYP2R1, CYP27B1, and VDR associated to genetic risk, and the most common clinical features of MS, RA, and SLE.  相似文献   

18.
Vitamin D plays an essential role in prevention and treatment of osteoporosis. Thyroid hormones, in addition to vitamin D, significantly contribute to regulation of bone remodeling cycle and health. There is currently no data about a possible connection between vitamin D treatment and the thyroid in the context of osteoporosis. Middle-aged Wistar rats were divided into: sham operated (SO), orchidectomized (Orx), and cholecalciferol-treated orchidectomized (Orx + Vit. D3; 5 µg/kg b.m./day during three weeks) groups (n = 6/group). Concentration of 25(OH)D in serum of the Orx + Vit. D3 group increased 4 and 3.2 times (p < 0.0001) respectively, compared to Orx and SO group. T4, TSH, and calcitonin in serum remained unaltered. Vit. D3 treatment induced changes in thyroid functional morphology that indicate increased utilization of stored colloid and release of thyroid hormones in comparison with hormone synthesis, to maintain hormonal balance. Increased expression of nuclear VDR (p < 0.05) points to direct, TSH independent action of Vit. D on thyrocytes. Strong CYP24A1 immunostaining in C cells suggests its prominent expression in response to Vit. D in this cell subpopulation in orchidectomized rat model of osteoporosis. The indirect effect of Vit. D on bone, through fine regulation of thyroid function, is small.  相似文献   

19.
20.
Cytokine and chemokine receptors can promote tumor progression, invasion, and metastasis development by inducing different intracellular signaling pathways. The aim of this study was to determine the cytokine and chemokine receptor gene expression patterns in human melanoma cell lines. We found a large set of cytokine and chemokine receptor genes that were significantly differentially expressed between melanoma cell lines that originated from different subtypes of primary melanomas as well as cell lines that originated from melanoma metastases. The relative expressions of two receptor genes (CCR2 and TNFRSF11B) were positively correlated with the invasive potential of the cell lines, whereas a negative correlation was observed for the TNFRSF14 gene expression. We also found a small set of receptor genes that exhibited a significantly decreased expression in association with a BRAFV600E mutation. Based on our results, we assume that the analyzed cytokine and chemokine receptor collection may provide potential to distinguish the different subtypes of melanomas, helping us to understand the biological behavior of BRAFV600E-mutated melanoma cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号