首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In our work, we investigated the possibility of dynamic stress detection based on the piezoelectric polarization using AlGaN/GaN circular high electron mobility transistors (C-HEMTs). In our knowledge, stress sensors in that account are introduced for the first time. The sensor structures exhibit good linearity in the piezoelectric response under dynamic stress conditions. The measurements reveal excellent stress detection sensitivity that is independent on the measured frequency range. The sensitivity of the devices can be easily increased by increase of the area of the Schottky gate ring electrode. The further increase of the sensitivity can be tuned by an optimal selection of the DC drain and gate bias.  相似文献   

2.
A physics‐based model of AlGaN/GaN High Electron Mobility Transistor (HEMT) is developed for the analysis of DC and microwave characteristics. Large‐ and small‐signal parameters are calculated for a given device dimensions and operating conditions. Spontaneous and piezoelectric polarizations at the heterointerface and finite effective width of the 2DEG gas have been incorporated in the analysis. The model predicts a maximum drain current of 523 mA/mm and transconductance of 138 mS/mm for a 1 μm × 75 μm device, which are in agreement with the experimental data. © 2007 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2007.  相似文献   

3.
本文首先从器件有源区耗尽过程分析表明AlGaN/GaN HEMTs器件具有与传统Si功率器件不同的耗尽过程,针对AlGaN/GaN HEMTs器件特殊的耐压机理,提出了一种降低表面电场,提高击穿电压的新型RESURF AlGaN/GaN HEMTs结构.新结构通过在极化的AlGaN层中引入分区负电荷,辅助耗尽二维电子气,有效降低了引起器件击穿的栅极边缘高电场,并首次在漏极附近引入正电荷使漏端高电场峰降低.利用仿真软件ISE分析验证了AlGaN/GaN HEMTs器件具有的"虚栅"效应,通过电场和击穿特性分析获得,新结构使器件击穿电压从传统结构的257V提高到550V.  相似文献   

4.
5.
This paper demonstrates that the depletion process for AlGaN/GaN high electron mobility tran-sistors(HEMTs)is different than that for silicon power devices by analyzing active region depletion.Based on the special breakdown principle that occurs in AlGaN/GaN HEMTs,we propose a new reduced surface field AlGaN/GaN HEMT with a double low-density drain(LDD)and a positively charged region near the drain to optimize the surface electric field and increase the breakdown voltage.In this structure,two negative charge regions with different doses are introduced into the polarization AlGaN layer to form a double LDD and decrease the high electric field near the gate by depleting two-dimensional electron gas.A positively charged region is added to the electrode near the drain to decrease the high electric field peak at the drain edge.By applying ISE(integrated systems engineering)simulation software,we verify that the virtual gate effect occurs in the AlGaN/GaN HEMTs.The breakdown voltage is improved from 257 V in the conventional structure to 550 V in the proposed structure.  相似文献   

6.
Tan  Xin  Lv  Yuanjie  Zhou  Xinye  Wang  Yuangang  Song  Xubo  Yang  Xuelin  Shen  Bo  Feng  Zhihong  Cai  Shujun 《Microsystem Technologies》2020,26(10):3189-3192
Microsystem Technologies - Based on the excellent piezoelectricity of AlGaN/GaN heterostructures, a pressure sensor was fabricated combined with micro machining technology. Direct readout was...  相似文献   

7.
The interesting ammonia sensing current-voltage (I-V) characteristics of a Pt/AlGaN/GaN Schottky diode are firstly studied and demonstrated. It is found that the ammonia sensitivity is increased by increasing the temperature. Yet, the sensitivity is decreased when the temperature is higher than 423 K. Experimentally, the studied device exhibits a good sensitivity of 13.1 under exposing to a relatively low concentration ammonia gas of 35 ppm NH3/air. In addition, the good sensing performance of the studied device is demonstrated over a wide operating temperature regime from 298 K to 473 K. A highest ammonia sensing response of 182.7 is found at 423 K while a 10,000 ppm NH3/air gas is introduced.  相似文献   

8.
A novel reduced surface field (RESURF) Al GaN /GaN high electron mobility transistor(HEMT)with charged buffer layer is proposed. Its breakdown mechanism and on-state characteristics are investigated.The HEMT features buried Fluorine ions in the GaN buffer layer both under the Drift and the Gate region (FDG). The section of FDG under the drift region (FD) not only reduces the electric field (E-field) peak at the gate edge but also enhances the E-field in the drift region by the assisted depletion, leading to a significant improvement in breakdown voltage (BV). Moreover, the section of FDG under the gate (FG) enhances the back barrier and effectively prevents electron injecting from the source to form leakage current, thus a higher BV is achieved. The BV of the proposed HEMT sharply increases to 750 V from 230 V of conventional AlGaN /GaN HEMT with the same dimensional parameters, and the specific on-resistance (Ron,sp) just increases to1.21 m?·cm~2from 1.01 m?·cm~2.  相似文献   

9.
Admittance parameters are widely employed to characterize the electromagnetic behavior of arbitrary planar waveguide junctions. Even though strong efforts have been devoted to the development of simple and efficient procedures for evaluating such parameters, it is still very important to further reduce the computation time required when analyzing waveguide systems as they become more complex. This article describes a simple and very fast procedure for computing the admittance parameters of planar waveguide junctions. The key feature of this procedure is that the frequency dependence of the admittance parameters is extracted from all infinite sums. As a result, only a few terms need to be evaluated at each frequency point thereby substantially reducing the computational effort. © 1997 John Wiley & Sons, Inc. Int J Microwave Millimeter-Wave CAE 7: 195–205, 1997.  相似文献   

10.
In this article, we present a physics‐based model to explain the effect of the GaN cap layers on the 2D electron gas density and the bare surface barrier height in AlGaN/GaN heterostructures. We consider that the 2DEG originates from the surface donor states present on the GaN cap top surface. The influence of a 2D hole gas, formed when the valence band crosses the Fermi energy level, has also been considered. This model agrees well with the published experimental results and TCAD simulations, and can easily be incorporated into the modeling of GaN/AlGaN/GaN‐based HEMT devices.  相似文献   

11.
Some industrial areas as oil, automotive and aerospace industries, require electromechanical systems working in harsh environments. An elegant solution is to use III-V materials alloys having semiconductor, piezoelectric and pyroelectric properties. These materials, particularly nitrides such as GaN or AlN, enable design of advanced devices suitable for harsh environment. A cantilever structure based on AlGaN/GaN/AlN heterostructures coupled with a High Electron Mobility Transistor (HEMT) can act as an electromechanical device suited for sensing applications. In this article, we present the mechanical modelling of such a structure. An analytical and a numerical model have been developed to obtain the electrical charge distribution in the structure in response to mechanical stress. A theoretical electromechanical sensitivity of 3.5 μC m−2 was achieved for the cantilever free end displacement of several hundreds of nanometres. Both models show good agreement, presenting less than 5% deviation in almost the whole structure. The differences between the two models that are pronounced near the clamped area can be explained by particular boundary conditions of the numerical model. The topological characterization and numerical modelling allowed the estimation of the equivalent intrinsic residual stress in the structure and the stress distribution within each layer. Finally, the dynamic mechanical characterization of fabricated cantilevers using laser interferometry is presented and compared to numerical modal analysis with less than 10% deviation between theoretical and experimental resonant frequencies. The obtained results enable the use of the analytical model for further study of the electromechanical coupling with the HEMT structure.  相似文献   

12.
The mobility of the two-dimensional electron gas (2DEG) in AIGaN/GaN hetero-structures changes significantly with AI content in the AIGaN barrier layer, while few mechanism analyses focus on it. Theoretical calculation and analysis of the 2DEG mobility in AIGaN/GaN heterostructures with varied AI content are carried out based on the recently reported experimental data. The 2DEG mobility is modeled analytically as the total effects of the scattering mechanisms including acoustic deformation-potential, piezoelectric, polar optic phonon, alloy disorder, interface roughness, dislocation and remote modulation doping scattering. We show that the increase of the 2DEG density, caused by the ascension of the AI content in the barrier layer, is a dominant factor that leads to the changes of the individual scat- tering processes. The change of the 2DEG mobility with AI content are mainly determined by the interface roughness scattering and the alloy disorder scattering at 77 K, and the polar optic phonon scattering and the interface roughness scattering at the room temperature. The calculated function of the interface roughness pa- rameters on the AI content shows that the stress caused AIGaN/GaN interface degradation at higher AI content is an important factor in the limitation of the in- terface roughness scattering on the 2DEG mobility in AIGaN/GaN heterostructures with high AI content.  相似文献   

13.
We obtained the output characteristics in wurtzite Al0.15Ga0.85N/GaN MODFETs with the full band Monte Carlo method. The gate length Lg and the channel length Los in the device are 0.2 μm and 0.4 urn, respectively. In the output characteristics we found a differential negative resistance effect. That is, as VDS is a constant, initially, VDS increases with increasing VDS. When VDS exceeds a certain critical value, IDS decreases with increasing VDS. The analysis for velocity-field characteristics in wurtzite CaN, the distributions of the electric field and the electron velocity in the two dimensional electron gas channel indicates that the differential negative resistance effect of the electron average velocity results in the differential negative resistance effect of the output characteristics. The transient transport also is related to the differential negative resistance effect of the output characteristics. This effect only can be observed in the devices with very short channel.  相似文献   

14.
Microsystem Technologies - This paper aims to characterize two high electron mobility transistors analyzed with sapphire and 4H-SiC substrate. Comparison of the two structures are carried out in...  相似文献   

15.
16.
A review of active device models for microwave CAD simulators is presented. Large-signal, nonlinear models are of particular interest. The basic techniques employed in deriving equivalent circuit and physically based models are reviewed. Various methods for solving the semiconductor device equations to establish physically based models are indicated. Finally, it is proposed that physically based, analytic GaAs MESFET models offer an attractive compromise between simulation efficiency and quantitative accuracy. The use of such a model is demonstrated by several examples, including comparison with experimental data. These models are suitable for use in comprehensive CAD workstation environments and allow process-type device models to be interfaced directly with RF circuit simulators.  相似文献   

17.
AlGaN/GaN high electron mobility transistor (HEMT) structures were grown on 2 inch sapphire substrates by MOCVD, and 0.8-μm gate length devices were fabricated and measured. It is shown by resistance mapping that the HEMT structures have an average sheet resistance of approximately 380 Θ/sq with a uniformity of more than 96%. The 1-mm gate width devices using the materials yielded a pulsed drain current of 784 mA/mm atV gs=0.5 V andV ds=7 V with an extrinsic transconductance of 200 mS/mm. A 20-GHz unity current gain cutoff frequency (f T) and a 28-GHz maximum oscillation frequency (f max) were obtained. The device with a 0.6-mm gate width yielded a total output power of 2.0 W/mm (power density of 3.33 W/mm) with 41% power added efficiency (PAE) at 4 GHz.  相似文献   

18.
We report on a piezoelectric response investigation of AlGaN/GaN circular high electron mobility transistor (C-HEMT) based ring gate capacitor as a new stress sensor device to be potentially applied for dynamic high-pressure sensing. A ring gate capacitor of C-HEMT with an additional ZnO gate interfacial layer was used to measure the changes in the piezoelectric charge induced directly by the variation of piezoelectric polarization of both gate piezoelectric layers (AlGaN, ZnO) for harmonic loading at different excitation frequences. Our experimental results show that about 10 nm thick piezoelectric ZnO layer grown on ring gate/AlGaN interface of C-HEMT can yield almost a 60% increase in the piezoelectric detection sensitivity of the device due to its higher piezoelectric coefficient. A three-dimensional CoventorWare simulation is carried out to confirm the increase in the measured piezoelectric response of ZnO based ring gate capacitor of C-HEMT.  相似文献   

19.
An accurate equivalent circuit large‐signal model (ECLSM) for AlGaN‐GaN high electron mobility transistor (HEMT) is presented. The model is derived from a distributed small‐signal model that efficiently describes the physics of the device. A genetic neural‐network‐based model for the gate and drain currents and charges is presented along with its parameters extraction procedure. This model is embedded in the ECLSM, which is then implemented in CAD software and validated by pulsed and continuous large‐signal measurements of on‐wafer 8 × 125‐μm GaN on SiC substrate HEMT. Pulsed IV simulations show that the model can efficiently describe the bias dependency of trapping and self‐heating effects. Single‐ and two‐tone simulation results show that the model can accurately predict the output power and its harmonics and the associated intermodulation distortion (IMD) under different input‐power and bias conditions. © 2012 Wiley Periodicals, Inc. Int J RF and Microwave CAE, 2013.  相似文献   

20.
The harmonic spur characteristics of a hybrid integrated S‐band power amplifier (PA), consisting of both stages of LDMOSFET and AlGaN/GaN HEMT, are studied at different temperatures. The PA offers a peak output power of 50 dBm (100 W) with power added efficiency higher than 50%, and adjacent channel power ratio performance is less than ?30 dBc. A temperature test chamber is employed for measuring the harmonic spur of PA from 233 to 393 K, and its linear response to temperature is captured at high output power level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号