首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Accumulating evidence indicates that miRNA regulatory circuits play important roles in tumorigenesis. We previously reported that miR-124 is correlated with prognosis of colorectal cancer due to PKM-dependent regulation of glycolysis. However, the mechanism by which miR-124 regulates apoptosis in colorectal cancer remains largely elusive. Here, we show that miR-124 induced significant apoptosis in a panel of colorectal cancer cell lines. The mitochondrial apoptosis pathway was activated by miR-124. Furthermore, the pro-apoptotic role of miR-124 was dependent on the status of PKM1/2 level. PKM1 was required for miR-124-induced apoptosis. Via direct protein-protein interaction, PKM1 promoted HNF4α binding to the promoter region of miR-124 and transcribing miR-124. Moreover, HNF4α or PKM1 had a more dramatic effect on colorectal cancer cell apoptosis in the presence of miR-124. However, inhibition of miR-124 blocked cell apoptosis induced by HNF4α or PKM1. These data indicate that miR-124 not only alters the expression of genes involved in glucose metabolism but also stimulates cancer cell apoptosis. In addition, the positive feedback loop between miR-124 and PKM1/HNF4α plays an important role in colorectal cancer cell apoptosis; it suggests that disrupting this regulatory circuit might be a potential therapeutic tool for colorectal cancer treatment.  相似文献   

3.
4.
5.
6.
Inflammation and transforming growth factor-β1 (TGF-β1) contribute to the development of peritoneal fibrosis (PF), which is associated with peritoneal dialysis (PD). Astragalus membranaceus (Astragalus) has anti-inflammatory and anti-fibrotic effects in many diseases. The goal of this study was to determine the anti-fibrotic effects of Astragalus on the PF response to PD. A rat model of PD was induced using standard PD fluid, and PF was verified by HE and Masson’s staining, as well as through the expression of fibroblast surface protein (FSP) and collagen III. The expression levels of monocyte chemoattractant protein (MCP)-1, F4/80 (macrophage/monocyte marker in rat), TGF-β1 and the downstream proteins phospho-SMAD 2/3 in dialyzed peritoneal tissue treated with or without Astragalus was evaluated using immunohistochemistry analysis. Overall correlations between MCP-1 and TGF-β1 staining were analyzed using both the Spearman and Pearson methods. The results showed that Astragalus could inhibit the recruitment and activation of monocytes/macrophages, thereby reducing the production of TGF-β1 in the dialyzed peritoneal membrane. PF was also significantly decreased following treatment with Astragalus. MCP-1 expression had a strong positive correlation with TGF-β1 sensitivity, suggesting that the anti-fibrotic function of Astragalus was mediated by MCP-1 and the TGF-β1 pathway. Our results indicate that Astragalus could be a useful agent against PD-induced PF.  相似文献   

7.
Tumor necrosis factor (TNF)-α is elevated during the acute phase of Kawasaki disease (KD), which damages vascular endothelial cells to cause systemic vasculitis. In the current study, we investigated the potential role of cordycepin on TNFα expression in both lipopolysaccharide (LPS)-stimulated macrophages and ex vivo cultured peripheral blood mononuclear cells (PBMCs) of KD patients. We found that cordycepin significantly suppressed LPS-induced TNFα expression and production in mouse macrophages (RAW 264.7 cells and bone marrow-derived macrophages (BMDMs)). Meanwhile, cordycepin alleviated TNFα production in KD patients’ PBMCs. PBMCs from healthy controls had a much lower level of basal TNF-α content than that of KD patients. LPS-induced TNF-α production in healthy controls’ PBMCs was also inhibited by cordycepin. For the mechanism study, we discovered that cordycepin activated AMP-activated protein kinase (AMPK) signaling in both KD patients’ PBMCs and LPS-stimulated macrophages, which mediated cordycepin-induced inhibition against TNFα production. AMPK inhibition by its inhibitor (compound C) or by siRNA depletion alleviated cordycepin’s effect on TNFα production. Further, we found that cordycepin inhibited reactive oxygen species (ROS) production and nuclear factor kappa B (NF-κB) activation in LPS-stimulate RAW 264.7 cells or healthy controls’ PBMCs. PBMCs of KD patients showed higher basal level of ROS and NF-κB activation, which was also inhibited by cordycepin co-treatment. In conclusion, our data showed that cordycepin inhibited TNFα production, which was associated with AMPK activation as well as ROS and NF-κB inhibition. The results of this study should have significant translational relevance in managing this devastating disease.  相似文献   

8.
Tumor necrosis factor α (TNF-α) influences endothelial cell viability by altering the regulatory molecules involved in induction or suppression of apoptosis. However, the underlying mechanisms are still not completely understood. In this study, we demonstrated that A20 (also known as TNFAIP3, tumor necrosis factor α-induced protein 3, and an anti-apoptotic protein) regulates the inhibitor of apoptosis protein-2 (cIAP-2) expression upon TNF-α induction in endothelial cells. Inhibition of A20 expression by its siRNA resulted in attenuating expression of TNF-α-induced cIAP-2, yet not cIAP-1 or XIAP. A20-induced cIAP-2 expression can be blocked by the inhibition of phosphatidyl inositol-3 kinase (PI3-K), but not nuclear factor (NF)-κB, while concomitantly increasing the number of endothelial apoptotic cells and caspase 3 activation. Moreover, TNF-α-mediated induction of apoptosis was enhanced by A20 inhibition, which could be rescued by cIAP-2. Taken together, these results identify A20 as a cytoprotective factor involved in cIAP-2 inhibitory pathway of TNF-α-induced apoptosis. This is consistent with the idea that endothelial cell viability is dependent on interactions between inducers and suppressors of apoptosis, susceptible to modulation by TNF-α.  相似文献   

9.
Reactive oxygen species (ROS) play a crucial role in the pathogenesis of acute and chronic respiratory diseases. Antioxidants have been found to ameliorate airway inflammation and hyperresponsiveness in animal models employing short-term exposure to allergen. However, little data are available on the effect of antioxidants on airway remodeling and signaling pathways in chronic asthma. In the present study, we used a long-term exposure murine model of allergic airway disease to evaluate the effects of an antioxidant, L-2-oxothiazolidine-4-carboxylic acid (OTC) or α-lipoic acid (LA) on airway remodeling, focusing on the ROS-related hypoxia-inducible signaling. Long-term challenge of ovalbumin (OVA) increased ROS production, airway inflammation, and airway hyperresponsiveness, and developed features of airway remodeling such as excessive mucus secretion, subepithelial fibrosis, and thickening of the peribronchial smooth muscle layer. Administration of OTC or LA reduced these features of asthma, including airway remodeling, which was accompanied by suppression of transforming growth factor-β1, vascular endothelial growth factor, and T-helper 2 cytokines. In addition, OVA-induced activation of nuclear factor-κB (NF-κB), nuclear factor erythroid 2p45-related factor-2 (Nrf2), hypoxia-inducible factor (HIF)-1α, and HIF-2α was reduced by OTC or LA. Our results also showed that OTC or LA down-regulated phosphoinositide 3-kinase activity and decreased phosphorylation of p38 mitogen-activated protein kinase but not extracellular signal-regulated kinase 1/2 or c-Jun N-terminal kinase. These findings demonstrate that OTC and LA can inhibit activation of NF-κB, Nrf2, and HIF, leading to attenuate allergen-induced airway remodeling.  相似文献   

10.
Asymmetric synthesis of (-)-1-trimethylsilyl-ethanol with immobilized Saccharomyces cerevisiae cells in water/organic solvent biphasic system was studied. The effects of shake speed, hydrophobicity of organic solvent, volume ratio of water phase to organic phase, pH value of aqueous phase and reaction temperature on the initial reaction rate, maximum yield and enantiomeric excess (ee) of the product were systematically explored. All the above-mentioned factors had significant influence on the reaction. n-Hexane was found to be the best organic solvent for the reaction. The optimum shake speed, volume ratio of water phase to organic phase, pH value and reaction temperature were 150 r.min-1, 1/2, 8 and 30 ℃ respectively, under which the maximum yield and enantiomeric excess of the product were as high as 96.8% and 95.7%, which are 15% and 16% higher than those of the corresponding reaction performed in aqueous phase. To our best knowledge, this is the most satisfactory result obtained.  相似文献   

11.
Gallbladder cancer is the most common malignancy of the bile duct, with low 5-year survival rate and poor prognosis. Novel effective treatments are urgently needed for the therapy of this disease. Here, we showed that cordycepin, the bioactive compound in genus Cordyceps, induced growth inhibition and apoptosis in cultured gallbladder cancer cells (Mz-ChA-1, QBC939 and GBC-SD lines). We found that cordycepin inhibited mTOR complex 1 (mTORC1) activation and down-regulated multiple drug resistant (MDR)/hypoxia-inducible factor 1α (HIF-1α) expression through activating of AMP-activated protein kinase (AMPK) signaling in gallbladder cancer GBC-SD cells. Contrarily, AMPKα1-shRNA depletion dramatically inhibited cordycepin-induced molecular changes as well as GBC-SD cell apoptosis. Further, our results showed that co-treatment with a low concentration cordycepin could remarkably enhance the chemosensitivity of GBC-SD cells to gemcitabine and 5-fluorouracil (5-FU), and the mechanism may be attributed to AMPK activation and MDR degradation. In summary, cordycepin induces growth inhibition and apoptosis in gallbladder cancer cells via activating AMPK signaling. Cordycepin could be a promising new drug or chemo-adjuvant for gallbladder cancer.  相似文献   

12.
Acute myocardial infarction is a highly prevalent cardiovascular disease in Taiwan. Among several etiological risk factors, obesity and inflammation are strongly associated with the frequency of hypertension, cardiovascular disease, diabetes, and myocardial infarction. To discriminate obesity- and inflammation-related genes and the onset of acute myocardial infarction (AMI), a case-control study was conducted to investigate the association of the -308G/A polymorphisms of tumor necrosis factor (TNF)-α and the C825T polymorphism of guanidine nucleotide binding protein 3 (GNB3) with the onset of AMI among Taiwanese cohorts. A total of 103 AMI patients and 163 matched normal control samples were enrolled in the present study. The genomic DNA was extracted and subjected into polymerase chain reaction-based restriction fragment length polymorphism (PCR-RFLP) analysis. An association between the A homozygosity of the TNF-α-308G/A polymorphism and the onset of AMI was observed among the male subjects (p = 0.026; Spearman index = 0.200, p = 0.008). An association between the T homozygosity of GNB3 C825T polymorphism and obesity was also observed (Fisher's exact, p = 0.009). The TT genotype has a protective effect against acquiring AMI among the obese female population in Taiwan (Fisher's exact, p = 0.032). In conclusion, TNF-α-308G/A and the GNB3 C825T polymorphisms are associated with obesity and AMI in the Taiwanese population.  相似文献   

13.
《Electrochimica acta》1986,31(8):929-936
Au(100, Au(111) and Au(110) electrodes with reconstructed surfaces of the type (5 × 20), (1 × 23) and (1 × 2), respectively, have been prepared by the so-called flame treatment and their properties investigated in various electrolytes by electrochemical and optical methods. The reconstructed (100) and (111) surfaces are found to be stable only in a potential range where no specific adsorption occurs. The Au(100)-(5 × 20) surface has optical properties which are distinctly different from those of the unreconstructed Au(100)-(1 × 1). This difference was used to monitor by in situ spectroscopy the adsorbate-induced (5 × 20) → (1 × 1) transition, in order to obtain information on the transition kinetics. For a certain fraction of the surface, electrochemically induced reconstruction, (1 × 1) → (5 × 20) and (1 × 1) → (1 × 23), has been observed for Au(100) and Au(111). The potentials of zero charge of the reconstructed surfaces have been determined and are compared with those of the unreconstructed ones.  相似文献   

14.
Trimethoprim cations forming self complementary hydrogen-bonded DADA arrays interact with the copper–phthalate supramolecular frameworks through extensive hydrogen bonding.  相似文献   

15.
Several α-(1H-imidazol-1-yl)-ω-phenylalkanes were synthesized and evaluated as novel inhibitors of heme oxygenase (HO). These compounds were found to be potent and selective for the stress-induced isozyme HO-1, showing mostly weak activity toward the constitutive isozyme HO-2. The introduction of an oxygen atom in the alkyl linker produced analogues with decreased potency toward HO-1, whereas the presence of a sulfur atom in the linker gave rise to analogues with greater potency toward HO-1 than the carbon-containing analogues. The most potent compounds studied contained a five-atom linker between the imidazolyl and phenyl moieties, whereas the most HO-1-selective compounds contained a four-atom linker between these groups. The compounds with a five-atom linker containing a heteroatom (O or S) were found to be the most potent inhibitors of HO-2; 1-(N-benzylamino)-3-(1H-imidazol-1-yl)propane dihydrochloride, with a nitrogen atom in the linker, was found to be inactive.  相似文献   

16.
In order to evaluate the proposed biosynthetic pathway for the methylmannose (MMPs) polysaccharides produced by mycobacteria, two homologous series of synthetic α-(1→4)-linked 3-O-methyl-mannopyranosides, one terminated at the non-reducing end by a free mannopyranose residue (unmethylated oligosaccharides; OS) and the other terminated by a 3-O-methyl-mannopyranose residue (methylated OS), were prepared and evaluated as potential acceptors of an α-(1→4)-mannosyltransferase. Using a mycobacterial membrane preparation as the source of the transferase, it was found that unmethylated OS are better substrates for the enzyme compared to the methylated OS of the same length. These results are inconsistent with the proposed MMP biosynthetic pathway, which suggests only methylated OS are acceptors of this transferase. To confirm that the observed activity arose from the desired α-(1→4)-mannosyltransferase, as opposed to other mannosyltransferases present in the membrane preparation, the products resulting from tetrasaccharides 4 (unmethylated OS) and 9 (methylated OS), which only differ in the terminal residue, were further analyzed. MALDI-MS, exo-glycosidase digestion and (1) H NMR spectroscopy were used to evaluate the structures of these reaction products. These experiments revealed that the enzymatic products of both 4 and 9 contain only α-(1→4)-linked mannose residues, confirming the activity of the α-(1→4)-mannosyltransferase. This supports the finding that both methylated and unmethylated OS are acceptors of the enzyme. It was also demonstrated that a homologous series of oligosaccharides with different number of mannose residues were formed from both 4 and 9, as opposed to a single reaction product. These results, again, challenge the previously proposed MMP biosynthetic pathway involving alternating methylation and mannosylation reactions.  相似文献   

17.
The enaminone compound 1-(2-pyridyl)-3-dimethylamine-1-propenone (1) reacts with [{Rh(μ-OY)(COD)}2] (OY=OMe, OH) dimers in the presence of water to form a mononuclear square-planar rhodium(I) complex 2, which incorporates the unexpected 1-(2-pyridyl)-3-oxo-1-propenoxide ligand (N, O). The mediation of the metal in this ligand transformation is demonstrated. The crystal structure of [Rh(N,O)(COD)] (2) reveals the coordination of the new propenoxide ligand as a N,O-bidentate with the presence of an additional non-coordinated aldehyde group. Complex 2 reacts with CO by displacement of the COD molecule, but maintaining the N,O-coordination of the chelate propenoxide ligand.  相似文献   

18.
A pronounced enantiomeric excess of ll-cysteine dimers is observed by scanning tunneling microscopy (STM) on the Au(110)-(1×2) surface after partial thermal desorption/decomposition of racemic cysteine. We systematically examine several possible origins for this intriguing observation of chiral symmetry breaking, including a chiral bias of the substrate, but remain unable to identify the source.  相似文献   

19.
Irradiating diamond with electrons or neutrons produces the electron paramagnetic resonance (EPR) R1 centre which has been shown to be a di-〈001〉-split interstitial. We report that on cooling below a certain threshold temperature and illuminating with unpolarized light of energy greater than 1.7(1) eV, spin polarization within the S=1 multiplet of the ground state of the R1 centre is observed. The threshold temperature to observe this effect depends on the concentration of the defect in the diamond. For a type IIa stone irradiated to a dose of 7×1017 2 MeV ecm−2 with an R1 concentration of 0.056(15) ppm the temperature is 67(2) K. The results of this study are consistent with a spin-selective, orientation-dependent optical transition, which changes the populations of the spin manifold and results in emissive EPR transitions. The spin polarization arises by selective excitation/repopulation of the 3Bu ground state of R1 mediated by spin–orbit coupling with a higher 1Bu state. Optical activity in the EPR system has yielded information about the electronic energy levels, and provides a bridge between optical and magnetic resonance spectroscopy. This system might have use as a light-pumped microwave or millimetre-wave maser material.  相似文献   

20.
Asthma is a common chronic pulmonary inflammatory disease, featured with mucus hyper-secretion in the airway. Recent studies found that glucagon like peptide-1 (GLP-1) analogs, including liraglutide and exenatide, possessed a potent anti-inflammatory property through a protein kinase A (PKA)-dependent signaling pathway. Therefore, the aim of current study was to investigate the value of GLP-1 analog therapy liraglutide in airway inflammation and mucus secretion in a murine model of ovalbumin (OVA)-induced asthma, and its underlying molecular mechanism. In our study, BALB/c mice were sensitized and challenged by OVA to induce chronic asthma. Pathological alterations, the number of cells and the content of inflammatory mediators in bronchoalveolar lavage fluid (BALF), and mucus secretion were observed and measured. In addition, the mRNA and protein expression of E-selectin and MUC5AC were analyzed by qPCR and Western blotting. Then, the phosphorylation of PKA and nuclear factor-κB (NF-κB) p65 were also measured by Western blotting. Further, NF-κB p65 DNA binding activity was detected by ELISA. OVA-induced airway inflammation, airway mucus hyper-secretion, the up-regulation of E-selectin and MUC5AC were remarkably inhibited by GLP-1 in mice (all p < 0.01). Then, we also found that OVA-reduced phosphorylation of PKA, and OVA-enhanced NF-κB p65 activation and NF-κB p65 DNA binding activity were markedly improved by GLP-1 (all p < 0.01). Furthermore, our data also figured out that these effects of GLP-1 were largely abrogated by the PKA inhibitor H-89 (all p < 0.01). Taken together, our results suggest that OVA-induced asthma were potently ameliorated by GLP-1 possibly through a PKA-dependent inactivation of NF-κB in mice, indicating that GLP-1 analogs may be considered an effective and safe drug for the potential treatment of asthma in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号