首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
目的制备重组碱性成纤维细胞生长因子(bFGF)凝胶剂。方法以卡波姆940、甘油、1,2丙二醇为基质,加入复方保护剂(肝素钠、人血白蛋白、甘露醇和HP-β-CD),制成bFGF凝胶剂,观察25和4℃保存的稳定性,并进行家兔局部刺激试验、急性毒性试验、促烧伤创面愈合试验。结果bFGF凝胶剂在25℃保存18个月、4℃保存24个月,效价维持在原效价的80%以上;局部用药未见皮肤刺激反应和急性毒性反应;促家兔烧伤创面愈合的效果明显优于水溶液剂。结论制备的bFGF凝胶剂安全有效,具有缓释作用,稳定性良好,具有广阔的临床应用前景。  相似文献   

2.
Cutibacterium acnes (C. acnes) is a common commensal bacterium that is closely associated with the pathogenesis of acne. Fibroblast growth factor 21 (FGF21), as a favorable regulator of glucose and lipid metabolism and insulin sensitivity, was recently shown to exert anti-inflammatory effects. The role and mechanism of FGF21 in the inflammatory reactions induced by C. acnes, however, have not been determined. The present study shows that FGF21 in the dermis inhibits epidermal C. acnes-induced inflammation in a paracrine manner while it functions on the epidermal layer through a receptor complex consisting of FGF receptor 1 (FGFR1) and β-Klotho (KLB). The effects of FGF21 in heat-killed C. acnes-induced HaCaT cells and living C. acnes-injected mouse ears were examined. In the presence of C. acnes, FGF21 largely counteracted the activation of Toll-like receptor 2 (TLR2), the downstream nuclear factor-κB (NF-κB), and mitogen-activated protein kinase (MAPK) signaling pathways induced by C. acnes. FGF21 also significantly reduced the expression of proinflammatory cytokines, including interleukin (IL)-1β, IL-6, IL-8, and tumor necrosis factor (TNF)-α. Taken together, these findings indicate that FGF21 suppresses C. acnes-induced inflammation and might be used clinically in the management and treatment of acne.  相似文献   

3.
目的在植物毛状根和毕赤酵母中表达人碱性成纤维细胞生长因子(Human basic fibroblast growth factor,hbFGF),并对发酵条件进行优化。方法将hbFGF基因分别克隆至表达载体pCAMBIA1301和pPICZα上,构建重组表达质粒pCAMBIA1301-hbFGF和pPICZα-hbFGF。通过发根农杆菌介导,将pCAMBIA1301-hbFGF质粒转入大豆毛状根;采用电转化法将质粒pPICZα-hbFGF转入毕赤酵母X-33菌株,PCR法筛选阳性转化子,诱导表达。筛选高效稳定表达株,发酵培养并优化发酵条件,SDS-PAGE和Western blot分析表达产物,并进行纯化。结果经酶切及测序证明两个重组表达质粒构建正确;经PCR鉴定证明hbFGF基因已整合入大豆毛状根及毕赤酵母基因组中;筛选出了在两种体系中发酵培养的最佳条件;hbFGF在大豆毛状根和毕赤酵母中的表达量分别占总蛋白的31%和42%,且均具有良好的反应原性;经纯化后,均可见相对分子质量约18000的单一条带。结论 hbFGF能够在大豆毛状根和毕赤酵母中高效表达,为其大规模工业化生产奠定了实验基础。  相似文献   

4.
目的研究重组牛碱性成纤维细胞生长因子对口腔溃疡的治疗效果。方法把84例口腔溃疡患者随机分成两组,治疗组42例,用重组牛碱性成纤维细胞生长因子局部喷洒口腔溃疡创面;对照组42例,采用常规治疗方法。结果治疗组4d有效率为97.6%,对照组4d有效率为78.6%,有显著性差异(P<0.05)。结论重组牛碱性成纤维细胞生长因子对口腔溃疡的治疗具有显著疗效。  相似文献   

5.
成纤维细胞生长因子受体(FGFRs)是受体酪氨酸激酶(RTKs)超家族的一员,它可以与成纤维细胞生长因子(FGFs)结合,引发靶细胞的多种反应,同时参与许多生物过程,如细胞增殖、抗凋亡及血管生成等,发挥其生理功能。FGFRs分别在癌细胞和内皮细胞中参与肿瘤的发生和血管的生成,因此,FGFRs-靶向药物会产生直接或间接的抗癌作用。简单介绍了FGFs及FGFRs,重点对FGFR抑制剂的研究进展进行了综述。  相似文献   

6.
目的制备重组人酸性成纤维细胞生长因子(rhaFGF)滴眼液,并进行稳定性检测。方法在rhaFGF中添加复方保护剂,并以透明质酸钠作为保湿剂,制备rhaFGF滴眼液,对其进行鉴定和体外药效学检测,并进行稳定性试验。结果制备的3批滴眼液各项质量指标均合格,可促进碱烧伤家兔角膜细胞和鸡胚绒毛膜血管增殖。在4℃保存12个月,-20℃保存18个月,(25±2)℃保存6个月,滴眼液各项质量指标与0月基本一致。结论制备的rhaFGF滴眼液稳定性良好,可促进损伤角膜细胞修复。  相似文献   

7.
Synovial mesenchymal stem cell (SMSC) is the promising cell source of cartilage regeneration but has several issues to overcome such as limited cell proliferation and heterogeneity of cartilage regeneration ability. Previous reports demonstrated that basic fibroblast growth factor (bFGF) can promote proliferation and cartilage differentiation potential of MSCs in vitro, although no reports show its beneficial effect in vivo. The purpose of this study is to investigate the promoting effect of bFGF on cartilage regeneration using human SMSC in vivo. SMSCs were cultured with or without bFGF in a growth medium, and 2 × 105 cells were aggregated to form a synovial pellet. Synovial pellets were implanted into osteochondral defects induced in the femoral trochlea of severe combined immunodeficient mice, and histological evaluation was performed after eight weeks. The presence of implanted SMSCs was confirmed by the observation of human vimentin immunostaining-positive cells. Interestingly, broad lacunae structures and cartilage substrate stained by Safranin-O were observed only in the bFGF (+) group. The bFGF (+) group had significantly higher O’Driscoll scores in the cartilage repair than the bFGF (−) group. The addition of bFGF to SMSC growth culture may be a useful treatment option to promote cartilage regeneration in vivo.  相似文献   

8.
Fibroblast growth factor (FGF)-23 induces hypertrophy and calcium (Ca2+) dysregulation in cardiomyocytes, leading to cardiac arrhythmia and heart failure. However, knowledge regarding the effects of FGF-23 on cardiac fibrogenesis remains limited. This study investigated whether FGF-23 modulates cardiac fibroblast activity and explored its underlying mechanisms. We performed MTS analysis, 5-ethynyl-2′-deoxyuridine assay, and wound-healing assay in cultured human atrial fibroblasts without and with FGF-23 (1, 5 and 25 ng/mL for 48 h) to analyze cell proliferation and migration. We found that FGF-23 (25 ng/mL, but not 1 or 5 ng/mL) increased proliferative and migratory abilities of human atrial fibroblasts. Compared to control cells, FGF-23 (25 ng/mL)-treated fibroblasts had a significantly higher Ca2+ entry and intracellular inositol 1,4,5-trisphosphate (IP3) level (assessed by fura-2 ratiometric Ca2+ imaging and enzyme-linked immunosorbent assay). Western blot analysis showed that FGF-23 (25 ng/mL)-treated cardiac fibroblasts had higher expression levels of calcium release-activated calcium channel protein 1 (Orai1) and transient receptor potential canonical (TRPC) 1 channel, but similar expression levels of α-smooth muscle actin, collagen type IA1, collagen type Ⅲ, stromal interaction molecule 1, TRPC 3, TRPC6 and phosphorylated-calcium/calmodulin-dependent protein kinase II when compared with control fibroblasts. In the presence of ethylene glycol tetra-acetic acid (a free Ca2+ chelator, 1 mM) or U73122 (an inhibitor of phospholipase C, 1 μM), control and FGF-23-treated fibroblasts exhibited similar proliferative and migratory abilities. Moreover, polymerase chain reaction analysis revealed that atrial fibroblasts abundantly expressed FGF receptor 1 but lacked expressions of FGF receptors 2-4. FGF-23 significantly increased the phosphorylation of FGF receptor 1. Treatment with PD166866 (an antagonist of FGF receptor 1, 1 μM) attenuated the effects of FGF-23 on cardiac fibroblast activity. In conclusion, FGF-23 may activate FGF receptor 1 and subsequently phospholipase C/IP3 signaling pathway, leading to an upregulation of Orai1 and/or TRPC1-mediated Ca2+ entry and thus enhancing human atrial fibroblast activity.  相似文献   

9.
Fibroblast growth factor receptors (FGFRs) are a family of receptor tyrosine kinases that have been associated not only with various cellular processes, such as embryonic development and adult wound healing but also enhanced tumor survival, angiogenesis, and metastatic spread. Proteolytic cleavage of these single-pass transmembrane receptors has been suggested to regulate biological activities of their ligands during growth and development, yet little is known about the proteases responsible for this process. In this study, we monitored the release of membrane-anchored FGFRs 1, 2, 3, and 4 in cell-based assays. We demonstrate here that metalloprotease-dependent metalloprotease family, ADAM10 and ADAM17. Loss- and gain-of-function studies in murine embryonic fibroblasts showed that constitutive shedding as well as phorbol-ester-induced processing of FGFRs 1, 3, and 4 is mediated by ADAM17. In contrast, treatment with the calcium ionophore ionomycin stimulated ADAM10-mediated FGFR2 shedding. Cell migration assays with keratinocytes in the presence or absence of soluble FGFRs suggest that ectodomain shedding can modulate the function of ligand-induced FGFR signaling during cell movement. Our data identify ADAM10 and ADAM17 as differentially regulated FGFR membrane sheddases and may therefore provide new insight into the regulation of FGFR functions.  相似文献   

10.
Fibroblast growth factors (FGFs) constitute a large family of signaling molecules that act in an autocrine/paracrine, endocrine, or intracrine manner, whereas the cellular communication network factors (CCN) family is composed of six members that manipulate extracellular signaling networks. FGFs and CCNs are structurally and functionally distinct, except for the common characteristics as matricellular proteins. Both play significant roles in the development of a variety of tissues and organs, including the skeletal system. In vertebrates, most of the skeletal parts are formed and grow through a process designated endochondral ossification, in which chondrocytes play the central role. The growth plate cartilage is the place where endochondral ossification occurs, and articular cartilage is left to support the locomotive function of joints. Several FGFs, including FGF-2, one of the founding members of this family, and all of the CCNs represented by CCN2, which is required for proper skeletal development, can be found therein. Research over a decade has revealed direct binding of CCN2 to FGFs and FGF receptors (FGFRs), which occasionally affect the biological outcome via FGF signaling. Moreover, a recent study uncovered an integrated regulation of FGF and CCN genes by FGF signaling. In this review, after a brief introduction of these two families, molecular and genetic interactions between CCN and FGF family members in cartilage, and their biological effects, are summarized. The molecular interplay represents the mutual involvement of the other in their molecular functions, leading to collaboration between CCN2 and FGFs during skeletal development.  相似文献   

11.
In vitro mitogenesis assays have shown that sulfated glycosaminoglycans (GAGs; heparin and heparan sulfate) cause an enhancement of the mitogenic activity of fibroblast growth factors (FGFs). Herein, we report that the simultaneous presence of FGF and the GAG is not an essential requisite for this event to take place. Indeed, preincubation with heparin (just before FGF addition) of cells lacking heparan sulfate produced an enhancing effect equivalent to that observed when the GAG and the protein are simultaneously added. A first structural characterization of this effect by analytical ultracentrifugation of a soluble preparation of the heparin‐binding domain of fibroblast growth factor receptor 2 (FGFR2) and a low molecular weight (3 kDa) heparin showed that the GAG induces dimerization of FGFR2. To derive a high resolution structural picture of this molecular recognition process, the interactions of a soluble heparin‐binding domain of FGFR2 with two different homogeneous, synthetic, and mitogenically active sulfated GAGs were analyzed by NMR spectroscopy. These studies, assisted by docking protocols and molecular dynamics simulations, have demonstrated that the interactions of these GAGs with the soluble heparin‐binding domain of FGFR induces formation of an FGFR dimer; its architecture is equivalent to that in one of the two distinct crystallographic structures of FGFR in complex with both heparin and FGF1. This preformation of the FGFR dimer (with similar topology to that of the signaling complex) should favor incorporation of the FGF component to form the final assemblage of the signaling complex, without major entropy penalty. This cascade of events is probably at the heart of the observed activating effect of heparin in FGF‐driven mitogenesis.  相似文献   

12.
利用逆转录-DNA聚合酶链式反应,从体外传代培养的人肺成纤维细胞中钓出人酸性成纤维细胞生长因子(aFGF)全编码区的cDNA,将其克隆人pKK223-质粒,在大肠杆菌JM105中高效表达出人重组aFGF。此aFGF经Heparin-Sepharose纯化后,表现了很好的生物学活性。  相似文献   

13.
Previous work showed a link between Tie2+ nucleus pulposus progenitor cells (NPPC) and disc degeneration. However, NPPC remain difficult to maintain in culture. Here, we report whole tissue culture (WTC) combined with fibroblast growth factor 2 (FGF2) and chimeric FGF (cFGF) supplementation to support and enhance NPPC and Tie2 expression. We also examined the role of PI3K/Akt and MEK/ERK pathways in FGF2 and cFGF-induced Tie2 expression. Young herniating nucleus pulposus tissue was used. We compared WTC and standard primary cell culture, with or without 10 ng/mL FGF2. PI3K/Akt and MEK/ERK signaling pathways were examined through western blotting. Using WTC and primary cell culture, Tie2 positivity rates were 7.0 ± 2.6% and 1.9 ± 0.3% (p = 0.004), respectively. Addition of FGF2 in WTC increased Tie2 positivity rates to 14.2 ± 5.4% (p = 0.01). FGF2-stimulated expression of Tie2 was reduced 3-fold with the addition of the MEK inhibitor PD98059 (p = 0.01). However, the addition of 1 μM Akt inhibitor, 124015-1MGCN, only reduced small Tie2 expression (p = 0.42). cFGF similarly increased the Tie2 expression, but did not result in significant phosphorylation in both the MEK/ERK and PI3K/Akt pathways. WTC with FGF2 addition significantly increased Tie2 maintenance of human NPPC. Moreover, FGF2 supports Tie2 expression via MEK/ERK and PI3K/Akt signals. These findings offer promising tools and insights for the development of NPPC-based therapeutics.  相似文献   

14.
重组牛碱性成纤维细胞生长因子治疗Ⅱ度烧伤的临床疗效   总被引:3,自引:0,他引:3  
目的 观察重组牛碱性成纤维细胞生长因子(bFGF)对烧伤创面愈合的治疗作用。方法 选择浅Ⅱ度和深Ⅱ度烧伤病例共920例,分别用bFGF治疗其烧伤创面,用药剂量为144U/cm2观察伤后8d(浅Ⅱ度)和15d(深Ⅱ度)创面愈合率,以及创面完全愈合时间。结集8d愈合率总体治疗组为77.6%±24.4%,对照组为51.7%±26.4%;完全愈合时间总体治疗组为9.6±2.4d,对照组为12.6±2.9d。15d愈合率总体治疗组为75.2%±26.3%,对照组为53.3%±25.4%;完全愈合时间总体治疗组为17.5 ±4.5d,对照组为21.9±5.5d。结论 bFGF具有明显的促进Ⅱ度烧伤创面愈合的作用。  相似文献   

15.
16.
目的优化重组人成纤维细胞生长因子-21(SUMO-rhFGF-21)融合表达工程菌的表达条件及目的蛋白纯化工艺。方法对工程菌的诱导温度、时间及诱导剂浓度进行优化,并进行罐发酵,对菌体裂解液进行离子交换层析、Ni离子亲和层析及分子筛层析等。纯化产物经SDS-PAGE和HPLC鉴定纯度。结果在诱导温度为37℃,诱导时间为4h,IPTG浓度为0.5mmol/L时,目的蛋白的表达量最高,达20.5%;罐发酵收菌量可达66g/L,目的蛋白的表达量达20.2%;纯化后的rhFGF-21纯度达96%以上。结论优化了rhFGF-21的表达条件及纯化工艺,为rhFGF-21用于新药开发奠定了基础。  相似文献   

17.
18.
Exercise training has been reported to alleviate cardiac fibrosis and ameliorate heart dysfunction after myocardial infarction (MI), but the molecular mechanism is still not fully clarified. Fibroblast growth factor 21 (FGF21) exerts a protective effect on the infarcted heart. This study investigates whether exercise training could increase FGF21 protein expression and regulate the transforming growth factor-β1 (TGF-β1)-Smad2/3-MMP2/9 signaling pathway to alleviate cardiac fibrosis following MI. Male wild type (WT) C57BL/6J mice and Fgf21 knockout (Fgf21 KO) mice were used to establish the MI model and subjected to five weeks of different types of exercise training. Both aerobic exercise training (AET) and resistance exercise training (RET) significantly alleviated cardiac dysfunction and fibrosis, up-regulated FGF21 protein expression, inhibited the activation of TGF-β1-Smad2/3-MMP2/9 signaling pathway and collagen production, and meanwhile, enhanced antioxidant capacity and reduced cell apoptosis in the infarcted heart. In contrast, knockout of Fgf21 weakened the cardioprotective effects of AET after MI. In vitro, cardiac fibroblasts (CFs) were isolated from neonatal mice hearts and treated with H2O2 (100 μM, 6 h). Recombinant human FGF21 (rhFGF21, 100 ng/mL, 15 h) and/or 5-Aminoimidazole-4-carboxamide ribonucleotide (AICAR, 1 mM, 15 h) inhibited H2O2-induced activation of the TGF-β1-Smad2/3-MMP2/9 signaling pathway, promoted CFs apoptosis and reduced collagen production. In conclusion, exercise training increases FGF21 protein expression, inactivates the TGF-β1-Smad2/3-MMP2/9 signaling pathway, alleviates cardiac fibrosis, oxidative stress, and cell apoptosis, and finally improves cardiac function in mice with MI. FGF21 plays an important role in the anti-fibrosis effect of exercise training.  相似文献   

19.
20.
Hyperglycemic conditions (HG), at early stages of diabetic nephropathy (DN), cause a decrease in podocyte numbers and an aberration of their function as key cells for glomerular plasma filtration. Klotho protein was shown to overcome some negative effects of hyperglycemia. Klotho is also a coreceptor for fibroblast growth factor receptors (FGFRs), the signaling of which, together with a proper rate of glycolysis in podocytes, is needed for a proper function of the glomerular filtration barrier. Therefore, we measured levels of Klotho in renal tissue, serum, and urine shortly after DN induction. We investigated whether it influences levels of FGFRs, rates of glycolysis in podocytes, and albumin permeability. During hyperglycemia, the level of membrane-bound Klotho in renal tissue decreased, with an increase in the shedding of soluble Klotho, its higher presence in serum, and lower urinary excretion. The addition of Klotho increased FGFR levels, especially FGFR1/FGFR2, after their HG-induced decrease. Klotho also increased levels of glycolytic parameters of podocytes, and decreased podocytic and glomerular albumin permeability in HG. Thus, we found that the decrease in the urinary excretion of Klotho might be an early biomarker of DN and that Klotho administration may have several beneficial effects on renal function in DN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号