首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study a comprehensive performance analysis of the Bigadic Geothermal District Heating System (GDHS) in Balikesir, Turkey is performed through thermodynamic assessment in terms of energy and exergy efficiencies. The actual thermal data taken from the Technical Department of the GDHS are utilized in the analysis to determine the exergy destructions in each component of the system and the overall energy and exergy efficiencies of the system for two reference temperatures taken as 15.6 °C for November (e.g., case 1) and 11 °C for December (e.g., case 2). The energy and exergy flow diagrams are clearly drawn to illustrate how much destructions/losses take place in addition to the inputs and outputs. The average energy and exergy efficiencies are found to be 30% and 36% for case 1, and 40% and 49% for case 2, respectively. The key reason as to why the exergy efficiencies are higher is because the heat recovery option is used through the reinjection processes which make use of waste heat. A parametric study is also conducted to show how energy and exergy flows change with the environment temperature. The results are expected to be helpful to researchers and engineers in the area.  相似文献   

2.
In this paper, we undertake a parametric study to investigate how varying reference temperature from 0 to 25 °C will affect the energy and exergy efficiencies of the Balcova geothermal district heating system (BGDHS) and develop two significant correlations (with a correlation coefficient of 0.99) that can be used for predicting the efficiencies. The exergy losses in the overall BGDHS are quantified and illustrated using exergy flow diagram particularly for a reference temperature of 11.4 °C for comparison purposes. This reference temperature is taken as an average value of the ambient temperatures measured during the past 5 years for the day of 2nd January to reflect the actual situation. The results show that the exergy losses within the system occur mainly due to the losses in pumps, heat exchangers, reinjection sections of the geothermal water back into reservoir and pipeline, and account for 1.75%, 8.84%, 14.20%, and 28.69%, respectively. In addition, we study energy and exergy efficiencies to determine the possibilities to improve the system, and energy and exergy efficiencies of the system are found to be 42.36% and 46.55%, respectively, for 2nd January 2004.  相似文献   

3.
This investigation deals with an exergoeconomic evaluation of the earth to air heat exchanger (EAHE) application for determining the optimal design greenhouse heating in Izmir, Turkey. The exergy destructions in the system are quantified and illustrated using tables for a reference temperature of 6 °C. The results indicate that the exergy destructions in the system occur primarily as a result of blower losses and heat exchanger losses. These average losses account for 85% and 4.5%, respectively. Both COP and exergy efficiency of the overall system was investigated to analyze and improve the systems performance. The average COP and exergetic efficiency were determined to be 10.51 and 89.25%, respectively. The results may provide useful insights into the relations between thermodynamics and economics for the EAHE heating systems.  相似文献   

4.
《Building and Environment》2005,40(10):1309-1322
In this study we present an energy and exergy assessment and modeling of geothermal district heating systems for their system analysis, performance evaluation and optimization. A comprehensive case study is conducted in Balcova geothermal district heating system (BGDHS) in Izmir, Turkey and actual thermal data are collected and employed for analysis. Using actual system data, an assessment of the district heating system performance, energy and exergy efficiencies, and exergy destructions in the system is conducted in this regard. The exergy destructions in the overall BGDHS are quantified and illustrated using exergy flow diagram. Furthermore, both energy and exergy flow diagrams are exhibited for comparison purposes. It is observed through analysis that the exergy destructions in the system particularly take place as the exergy of the fluid lost in the pumps, the heat exchanger losses, the exergy of the thermal water (geothermal fluid) reinjected and the natural direct discharge (hot water distribution losses) of the system, accounting for 1.64%, 8.57%, 14.84% and 28.96%, respectively, of the total exergy input to the BGDHS. For system performance analysis and improvement, both energy and exergy efficiencies of the overall BGDHS are investigated and are determined to be 41.9% and 46%, respectively.  相似文献   

5.
An energetic and exergetic modeling of a solar-assisted vertical ground-source heat pump (GSHP) greenhouse heating system (SAGSHPGHS) for system analysis and performance assessment is presented in this study. Energy (heating coefficient of performance ‘COP’) and exergy efficiencies at various reference and entering water temperatures are also determined. The actual thermal data collected are utilized for the model calculations at different reference temperature values in the range of −0.69 to 25 °C. Furthermore, the performance of a SAGSHPGHS, installed in Solar Energy Institute of Ege University, Izmir, Turkey, is evaluated to show, how energy and exergy efficiencies values change with system. The exergy destructions in the overall SAGSHPGHS are quantified, particularly for a reference temperature of −0.69 °C on 7 January 2004 for comparison purposes. Based upon the measurements made in the heating mode from the 16th of December 2003 till 31st of March 2004, average heating COPs of the GSHP unit and the overall system are obtained to be 2.84 and 2.27, respectively. The best (peak) COP of the GSHP and system were found to be 3.14 and 2.79 on 7 January 2004, respectively. Average exergy efficiency of the system is determined to be 68.11%, while the best exergy efficiency peak values for the GSHP unit and the whole system on a product/fuel basis are obtained to be 76.2% and 75.6%, respectively.  相似文献   

6.
An exergoeconomic model of a vertical ground-source heat pump residential heating system presented in this study uses exergy and cost energy mass (EXCEM) methods. The data obtained from a ground-source heat pump (GSHP) residential heating system installed at the Solar Energy Institute, Ege University, Turkey, are utilized for calculations at different reference temperature values in the range 0–25 °C. The performance of the geothermal heat pump residential heating system is evaluated to indicate how exergoecomic parameter values change with system. We also undertake a parametric study to investigate how varying reference temperatures will affect the exergoeconomic analysis of the GSHP system. A correlation between the ratio of thermodynamic loss rate to capital cost and reference state temperature is developed.  相似文献   

7.
This study deals with an exergetic analysis and assessment of a low exergy heating system from the power plant through the ground-source heat pump to the building envelope. The methodology used is based on a pre-design analysis tool, which has been produced during ongoing work for the International Energy Agency (IEA) formed within the Energy Conservation in Buildings and Community Systems Programme (ECBCSP) Annex 37 to increase the understanding of exergy flows in buildings and to be able to find possibilities for further improvements in energy utilization in buildings. The analysis is applied to a room with a volume of 105 m3 and a net floor area of 35 m2 as an application place, while indoor and exterior air temperatures are 20 °C and −15 °C, respectively. The heat pump system used for heat production with a maximum supply temperature of 55 °C was designed, constructed and tested in Aksaray University, Aksaray, Turkey. In this context, energy and exergy flows were investigated, while exergy destructions in the overall system were quantified and illustrated. Total exergy input of the system was found to be 7.93 kW and the largest exergy destruction occurred in the primary energy transformation at 5.31 kW.  相似文献   

8.
In order to evaluate and improve the design of space heating systems with groundwater source heat pumps (GWHP), common design practices should be examined. In this paper, a GWHP system with common design is studied. The COP of the heat pump is 3.5 at design condition. The system is divided into five subsystems, and exergetic cost analysis is performed on it based on structural theory of thermoeconomics. The results show that the three largest relative exergy destructions and lowest exergy efficiencies occur in power generation and distribution, heat pump, and terminal unit subsystems with relative exergy destructions of 71.2%, 17.1% and 7.02% and exergy efficiencies of 32.8%, 54.8% and 65.6% respectively. The three subsystems also have the largest increases of unit exergetic costs of 2.04 W/W, 2.15 W/W, and 2.73 W/W respectively. Therefore, designers of GWHP space heating systems should pay close attention to heat pump and terminal unit subsystems, especially to the latter one because of its larger increase of unit exergetic cost. The unit exergetic cost of the system final exergetic product is 7.92 W/W. This value can be used to evaluate the system and compare it with others from the viewpoint of energy conservation.  相似文献   

9.
This study deals with determination of optimum pipe diameters based on economic analysis and the performance analysis of geothermal district heating systems along with pipelines using energy and exergy analysis methods. In this regard, the Dikili geothermal district heating system (DGDHS) in Izmir, Turkey is taken as an application place, to which the methods presented here are applied with some assumptions. The system mainly consists of three cycles, namely (i) the transportation network, (ii) the Danistay region, and (iii) the Bariskent region. The thermal capacities of these regions are 21,025 and 7975 kW, respectively, while the supply (flow) and return temperature values of those are 80 and 50 °C, respectively.  相似文献   

10.
Simav is one of the most important 15 geothermal areas in Turkey. It has several geothermal resources with the mass flow rate ranging from 35 to 72 kg/s and temperature from 88 to 148 °C. Hence, these geothermal resources are available to use for several purposes, such as electricity generation, district heating, greenhouse heating, and balneological purposes. In Simav, the 5000 residences are heated by a district heating system in which these geothermal resources are used. Beside this, a greenhouse area of 225,000 m2 is also heated by geothermal. In this study, the working conditions of the Simav geothermal district heating system have been optimized. In this paper, the main characteristics of the system have been presented and the impact of the parameters of heating circuit on the system are investigated by the means of energy, exergy, and life cycle cost (LCC) concepts. As a result, the optimum heating circuit has been determined as 60/49 °C.  相似文献   

11.
This study deals with energy and exergy analyses of ice rink buildings. An ice rink building with a net area of 648 m2, which is considered to be closed type and located in Turkey, is assessed. Based on the capacity of the ice rink area, the refrigeration system consists of two circuits with the same basic system components, where two types of refrigerants R-134A and R-744 (CO2) are used. Exergy analysis is based on Lowex approach, while the effect of varying reference (dead) state temperatures on the system exergy efficiency is investigated. It includes exergy transmission load, air infiltration load, exergy load room, exergy demand distribution, exergy load generation, total exergy system efficiency and exergy flexibility factor. Total exergy input rate is calculated to be 253.66 kW, while exergy destruction rate is 227.45 kW. The minimum and maximum exergy efficiency values are found to be 1.72% and 19.05% for reference state temperatures of 10 °C and −10 °C, respectively.  相似文献   

12.
The performance of a high-temperature heat pump unit using geothermal water for heat recovery in buildings is experimentally evaluated. The unit consists of a twin-screw refrigeration compressor, a condenser, an evaporator and an oil cooling system. The effect of the cooled oil temperature on the performance of the heat pump unit is experimentally investigated. Results show that the unit stably produces outlet hot water at a constant temperature of 85 °C and performs well in a wide range of high-temperature conditions with a high energy efficiency ratio. The results also indicate that the key to improving the performance of a high-temperature heat pump unit often depend on the selection of proper cooled oil temperature. The optimum cooled oil temperature is 50-65 °C when the condensing temperature is above 70 °C. At these temperatures, the oil cooling system can increase the energy efficiency ratio of the heat pump by 6.3%.  相似文献   

13.
In this paper we investigate of energetic and exergetic efficiencies of ground-coupled heat pump (GCHP) system as a function of depth trenches for heating season. The horizontal ground heat exchangers (HGHEs) were used and it were buried with in 1 m (HGHE1) and 2 m (HGHE2) depth trenches. The energy efficiency of GCHP systems are obtained to 2.5 and 2.8, respectively, while the exergetic efficiencies of the overall system are found to be 53.1% and 56.3%, respectively, for HGHE1 and HGHE2. The irreversibility of HGHE2 is less than of the HGHE1 as about 2.0%. The results show that the energetic and exergetic efficiencies of the system increase when increasing the heat source (ground) temperature for heating season. And the end of this study, we deal with the effects of varying reference environment temperature on the exergy efficiencies of HGHE1 and HGHE2. The results show that increasing reference environment temperature decreases the exergy efficiency in both HGHE1 and HGHE2.  相似文献   

14.
In this study, a building with a volume of 351 m3 and a net floor area of 117 m2 is considered as a case study with the indoor and exterior air temperatures of 20 and 0 °C, respectively. For the heating applications, four options are studied with (1) a heat pump, (2) a condensing boiler, (3) a conventional boiler and (4) a solar collector, which are driven by renewable and non-renewable energy sources. An energy and exergy analysis is employed to assess their performances and compare them through energy and exergy efficiencies and sustainability index. Energy and exergy flows are investigated and illustrated. Also, the energetic and exergetic renewability ratios are utilized here along with sustainability index. The results show that overall exergy efficiencies of heat pump, condensing boiler, conventional boiler and solar heating systems are found to be 3.66, 3.31, 2.91, and 12.64%, while the sustainability index values for the four cases considered are calculated to be 1.039, 1.034, 1.030 and 1.144, respectively. So, solar collector-based heating system gives the highest efficiency and sustainability index values.  相似文献   

15.
New approaches to space conditioning of buildings are required to resolve economic, environmental, and regulatory issues. One of the alternative systems that is brought to agenda is the desiccant cooling systems, which may provide important advantages in solving air conditioning problems. This study deals with the performance analysis and evaluation of a novel desiccant cooling system using exergy analysis method. The system was designed, constructed and tested in Cukurova University, Adana, Turkey and has been successfully operated since 2008. This system consists of a desiccant wheel, heat exchangers, fans, evaporative cooler, electric heater unit and refrigeration unit. The exergy transports between the components and the destructions in each of the components of the desiccant cooling system are determined for the average measured parameters obtained from the experimental results. Exergy efficiencies of the system components are determined in an attempt to assess their individual performances and the potential for improvements is also presented. The exergetic efficiency values for the whole system on the exergetic product/fuel basis are calculated to range from round 32% to 10% at the varying dead (reference) state temperatures of 0-30 °C.  相似文献   

16.
《Energy and Buildings》2005,37(1):101-110
Ground-source heat pumps (GSHPs), also known as geothermal heat pumps (GHPs), are recognized to be outstanding heating, cooling and water heating systems, and have been used since 1998 in the Turkish market. Greenhouses also have important economical potential in Turkey’s agricultural sector. In addition to solar energy gain, greenhouses should be heated during nights and cold days. In order to establish optimum growth conditions in greenhouses, renewable energy sources should be utilized as much as possible. It is expected that effective use of heat pumps with a suitable technology in the modern greenhouses will play a leading role in Turkey in the foreseeable future.The main objective of the present study is to investigate to the performance characteristics of a solar assisted ground-source heat pump greenhouse heating system (SAGSHPGHS) with a 50 m vertical 1 × 1/4 in. nominal diameter U-bend ground heat exchanger using exergy analysis method. This system was designed and constructed in Solar Energy Institute of Ege University, Izmir, Turkey. The exergy transports between the components and the destructions in each of the components of the SAGSHPGHS are determined for the average measured parameters obtained from the experimental results. Exergetic efficiencies of the system components are determined in an attempt to assess their individual performances and the potential for improvements is also presented. The heating coefficient of performances of the ground-source heat pump unit and the overall system are obtained to be 2.64 and 2.38, respectively, while the exergetic efficiency of the overall system is found to be 67.7%.  相似文献   

17.
Solar water heating (SWH) is a well-proven renewable energy technology and has been used in many countries of the world. The basic technology is straightforward, although there are a variety of various types of SWH systems. In the performance assessment of SWH systems, energy analysis (first law) method has been widely used, while the number of the studies on exergetic assessment is relatively low. The SWH system investigated consists of mainly three parts, namely a flat plate solar collector, a heat exchanger (storage tank) and a circulating pump. The main objectives of the present study are as follows, differing from the previously conducted ones: (i) to model and assess SWH systems using exergy analysis (second law) method as a whole, (ii) to investigate the effect of varying water inlet temperature to the collector on the exergy efficiencies of the SWH system components, (iii) to study some thermodynamic parameters (fuel depletion ratio, relative irreversibility, productivity lack and exergetic factor) and exergetic improvement potential, and (iv) to propose and present an exergy efficiency curve similar to the thermal efficiency curve for solar collectors. The system performance is evaluated based on the experimental data of the Izmir province, Turkey, which is given as an illustrative example. Exergy destructions (or irreversibilities) as well as exergy efficiency relations are determined for each of the SWH system components and the whole system. Exergy efficiency values on a product/fuel basis are found to range between from 2.02 to 3.37%, and 3.27 to 4.39% at a dead (reference) state temperature of 32.77 °C, which is an average of ambient temperatures at eight test runs from 1.10 to 3.35 p.m., for the solar collector and entire SWH system, respectively. An exergy efficiency correlation for the solar collector studied was also presented to determine its exergetic performance. It is expected that the model presented here would be beneficial to the researchers, government administration, and engineers working in the area of SWH systems for residential applications.  相似文献   

18.
This study deals with exergetic assessment of an educational building heated by a conventional boiler in a heating center. The heating system is examined from the generation stage to the envelope of the building. In general the heat loss calculations are made using both energy and exergy analysis methods. The energy and exergy flows between the stages are obtained using a pre-design tool for an optimized building design. Energy and exergy losses are obtained to evaluate the performance of the system. A conventional boiler in the heating center and a fan coil unit in a room are considered in the analysis. Total exergy input rate is calculated to be 694.5 kW, while the largest exergy loss rate is obtained to be 333 kW. Exergetic efficiencies of the conventional boiler and the fan coil unit are also found to be 13.4% and 37.6%, respectively.  相似文献   

19.
This paper presents the exergy and exergoeconomic analysis of a proposed steam reheat power plant powered by the municipal waste of Port Harcourt city in Nigeria, latitude 4°45′ N and longitude 7°00′ E. The projected municipal waste generation of the city for the year 2020 was employed for this work to ascertain the amount of power obtainable via a waste incineration plant, taking into consideration the cost effectiveness of the plant. The thermodynamic analysis of the plant showed that 117?MW could be generated from the projected waste, with plant's first and second law efficiencies of 36.91% and 31.36%, respectively. The plant equipment cost was calculated to be US$326,460,000 with a payback period of about six years. The exergy and exergoeconomic analysis was used to estimate the plant’s unit cost of electricity and evaluate the exergy destruction and cost rates, with respect to the prevalent ambient temperature.  相似文献   

20.
Arsenic accumulation in irrigated agricultural soils in Northern Greece   总被引:1,自引:0,他引:1  
The accumulation of arsenic in soils and food crops due to the use of arsenic contaminated groundwater for irrigation has created worldwide concern. In the Chalkidiki prefecture in Northern Greece, groundwater As reach levels above 1000 μg/L within the Nea Triglia geothermal area. While this groundwater is no longer used for drinking, it represents the sole source for irrigation.This paper provides a first assessment of the spatial extent of As accumulation and of As mobility during rainfall and irrigation periods. Arsenic content in sampled soils ranged from 20 to 513 mg/kg inside to 5-66 mg/kg outside the geothermal area. Around irrigation sprinklers, high As concentrations extended horizontally to distances of at least 1.5 m, and to 50 cm in depth. During simulated rain events in soil columns (pH = 5, 0 μg As/L), accumulated As was quite mobile, resulting in porewater As concentrations of 500-1500 μg/L and exposing plant roots to high As(V) concentrations. In experiments with irrigation water (pH = 7.5, 1500 μg As/L), As was strongly retained (50.5-99.5%) by the majority of the soils. Uncontaminated soils (< 30 mg As/kg) kept soil porewater As concentrations to below 50 μg/L. An estimated retardation factor Rf = 434 for weakly contaminated soil (< 100 mg/kg) indicates good ability to reduce As mobility. Highly contaminated soils (> 500 mg/kg) could not retain any of the added As. Invoked mechanisms affecting As mobility in those soils were adsorption on solid phases such as Fe/Mn-phases and As co-precipitation with Ca. Low As accumulation was found in collected olives (0.3-25 μg/kg in flesh and 0.3-5.6 μg/kg in pits). However, soil arsenic concentrations are frequently elevated to far above recommended levels and arsenic uptake in faster growing plants has to be assessed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号