首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Wind-driven rain (WDR) deposition on a two-building configuration is studied with Computational Fluid Dynamics (CFD). The configuration consists of a high-rise building screened by a low-rise building. Validation of the wind-flow simulations is performed with Particle Image Velocimetry (PIV) measurements in a wind tunnel. Raindrop motion is simulated by Lagrangian particle tracking in the mean wind-flow pattern with a reference wind speed U10=10 m/s. Horizontal rainfall intensities Rh=5 and 30 mm/h are considered. Simulations of WDR are performed for the two-building configuration and for each building separately, to analyse the mutual influence of the buildings on their WDR deposition pattern. The simulation results indicate that this influence is very pronounced and that it is to some extent opposite to what might be expected. The low-rise building influences the deposition on the high-rise building (downstream disturbance), not by partly shielding it from wind and WDR, but by increasing the strength of the standing vortex between the two buildings. This locally increases WDR intensities on the high-rise building facade by more than a factor 2 for both Rh=5 and 30 mm/h. On the other hand, the high-rise building influences deposition on the low-rise building facade (upstream disturbance) by the wind-blocking effect. This effect yields a reduction in WDR deposition on the low-rise building facade by up to about 25% for both Rh=5 and 30 mm/h. In the European standard draft for WDR assessment, the mutual influence can only be taken into account by a simplified reduction factor, called the obstruction factor. It only considers downstream disturbances, and does not consider the possibility of increased WDR deposition due to neighbouring buildings. Care should therefore be exercised when using the current version of the obstruction factor to determine WDR exposure.  相似文献   

2.
Indoor moisture management, which means keeping the indoor relative humidity (RH) at correct levels, is very important for whole building performance in terms of indoor air quality (IAQ), energy performance and durability of the building. In this study, the effect of combining a relative-humidity-sensitive (RHS) ventilation system with indoor moisture buffering materials was investigated. Four comprehensive heat–air–moisture (HAM) simulation tools were used to analyse the performance of different moisture management strategies in terms of IAQ and of energy efficiency. Despite some differences in results, a good agreement was found and similar trends were detected from the results, using the four different simulation tools. The results from simulations demonstrate that RHS ventilation reduces the spread between the minimum and maximum values of the RH in the indoor air and generates energy savings. Energy savings are achieved while keeping the RH at target level, not allowing for possible risk of condensations. The disadvantage of this type of demand controlled-ventilation is that other pollutants (such as CO2) may exceed target values. This study also confirmed that the use of moisture-buffering materials is a very efficient way to reduce the amplitude of daily moisture variations. It was possible, by the combined effect of ventilation and wood as buffering material, to keep the indoor RH at a very stable level.  相似文献   

3.
Wind-driven rain (WDR) is one of the most important moisture sources that affect the hygrothermal performance and the durability of building facades. The facades of the Dutch monumental building St. Hubertus show severe deterioration caused by WDR. Assessment of the amount and intensity of WDR falling onto the facades is necessary as input for numerical heat-air-moisture (HAM) transfer models to analyse the causes of the moisture problems and the impact of remedial measures. In this study, a numerical simulation method based on Computational Fluid Dynamics (CFD) is used to predict the amount of WDR impinging on the south-west facade of the tower of the building. The paper focuses on the numerical simulation results, the validation of these results and their sensitivity to two parameters: the level of geometrical detailing of the computational building model and the upstream terrain aerodynamic roughness length. Validation is performed by comparison of the numerical results with a dataset obtained from on-site WDR measurements. It is shown that the CFD simulations provide fairly good predictions of the amount of WDR impinging on the south-west facade of the tower, except for the lower part. It is also shown that the local effects of geometrical facade details are significant and can yield differences in WDR exposure up to 40%, while their effect at other positions is negligible. Finally, the sensitivity of WDR simulations to the upstream aerodynamic roughness length is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号