首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sustainable and environmentally responsible building concept aims at a high workplace comfort, a significantly reduced heating and cooling demand, a high-efficient plant system, and the use of renewable energy sources to condition the built environment. This paper presents a comprehensive analysis of the heating and cooling concepts of 11 low-energy buildings in terms of energy use, efficiency and occupant thermal comfort. All buildings investigated employ environmental energy sources and sinks – such as the ground, ground water, rainwater and the ambient air – in combination with thermo-active building systems. A limited primary energy use of about 100 kWhprim/(m2neta) as a target for the complete building service technology (HVAC and lighting) was postulated for all buildings presented. With respect to this premise, a comprehensive long-term monitoring in high time resolution was carried out for two to five years, with an accompanying commissioning of the building performance. Measurements include the useful heating and cooling energy use, auxiliary energy use for the hydraulic system, as well as end and primary energy use, occupant thermal comfort and local meteorological conditions. A new methodology is proposed for a holistic approach to the evaluation of heating and cooling concepts, which not only considers the occupants thermal comfort, but also the useful energy consumption and the efficiency of the generation, distribution and delivery of heating and cooling energy.  相似文献   

2.
This article presents a simulation study comparing the primary energy and comfort performance of ventilation assisted thermo-active building systems (TABS) relative to a conventional all-air (VAV) system in a compact office building featuring good thermal envelope performance, heat recovery, and solar gain control for the continental climate of Omaha, Nebraska with pronounced heating and cooling periods. TABS heating is accomplished using a geothermal heat pump and TABS cooling using a geothermal heat exchanger without an additional vapor compression cycle required. It was found that the coordination of the TABS and VAV systems is crucial, i.e., supply air temperature and active layer temperature setpoints and reset schedules greatly affect the performance of the overall system. The small contribution of TABS in the heating case shows the need for the adaptation of the ventilation system configuration to the TABS system. Annual cooling energy demand for the ventilation assisted TABS is higher than for the pure VAV system, which is due to lower occupied period room operative temperatures and thus a higher comfort provided. While a 4% useful energy penalty for the combined TABS/VAV was recorded, the VAV case requires 20% more delivered energy than the TABS case because of the displacement of compressor driven coil loads with low-exergy cooling through the ground heat exchanger in the TABS case. A primary energy intensity of 189 kWh/m2 a was recorded for the TABS case; in contrast, the conventional all-air (VAV) equipped building incurs a primary energy intensity of 229 kWh/m2a, which represents a penalty of 20%. Clear advantages of the TABS approach can be observed with respect to thermal comfort: during summer cooling periods, the mean radiant temperature of the TABS case is on average 2 K below that of the VAV case. Moreover, the VAV system is associated with a fairly constant predicted mean vote (PMV) value of 0.75, which is quite warm, while the TABS equipped system reveals an average of 0.56, which results in only 12% instead of 17% of people dissatisfied. Based on these results, ventilation assisted thermo-active cooling systems appear to be a very promising alternative to conventional all-air systems offering both significant primary energy as well as thermal comfort advantages provided the TABS is mated with low-exergy heating and cooling sources.  相似文献   

3.
Recently adaptive thermal-comfort criteria have been introduced in the international indoor-climate standards to reduce the heating/cooling energy requirements. In 2008, the Finnish Society of Indoor Air Quality (FiSIAQ) developed the national adaptive thermal-comfort criteria of Finland. The current study evaluates the impact of the Finnish Criteria on energy performance in an office building. Two fully mechanically air-conditioned single offices are taken as representative zones. A simulation-based optimization scheme (a combination of IDA-ICE 4.0 and a multi-objective genetic-algorithm from MATLAB-2008a) is employed to determine the minimum primary energy use and the minimum room cooling-equipment size required for different thermal comfort levels. The applicability of implementing energy-saving measures such as night ventilation, night set-back temperature, day lighting as well as optimal building envelope and optimal HVAC settings are addressed by investigating 24 design variables. The results show that, on average, an additional 10 kWh/(m2 a) primary energy demand and a larger 10 W/m2 room cooling-equipment size are required to improve the thermal comfort from medium (S2) to high-quality (S1) class; higher thermal comfort levels limit the use of night ventilation and water radiator night-set back options. Compared with the ISO EN 7730-2005 standard, the Finnish criterion could slightly decrease the heating/cooling equipment size. However, it significantly increases both the heating and cooling energy demand; the results show 32.8% increase in the primary energy demand. It is concluded that the Finnish criterion-2008 is strict and does not allow for energy-efficient solutions in standard office buildings.  相似文献   

4.
According to the Energy Performance of Buildings Directive (EPBD) all new European buildings (residential, commercial, industrial, etc.) must since 2006 have an energy declaration based on the calculated energy performance of the building, including heating, ventilating, cooling and lighting systems. This energy declaration must refer to the primary energy or CO2 emissions.The European Organization for Standardization (CEN) has prepared a series of standards for energy performance calculations for buildings and systems. This paper presents related standards for heating systems. The relevant CEN-standards are presented and a sample calculation of energy performance is made for a small single family house, an office building and an industrial building in three different geographical locations: Stockholm, Brussels, and Venice.The additional heat losses from heating systems can be 10-20% of the building energy demand. The additional loss depends on the type of heat emitter, type of control, pump and boiler.  相似文献   

5.
Europe with more than 600 millions of square meters of air-conditioned office buildings offers an opportunity to save energy and reduce CO2 emissions by reconverting chillers into reversible heat pumps in office buildings. One of the questions asked in the framework of the IEA ECBCS Annex 48 is how to assess the energy saving potential and how to identify the most interesting building cases. The methodology proposed here is based on the simulation of office buildings representative of the building stock. The energy consumption has been simulated for different office building types in five European climatic zones on the one hand with boilers for heating and chillers for cooling, and on the other hand with reversible chillers plus back-up boilers. The results of the simulations in terms of energy consumption allow us to assess the primary energy savings and CO2 emission reduction in Europe by reconverting chillers into reversible heat pumps. The results show that the potential of annual primary energy savings and annual CO2 emission reduction are about 8 TWhPE and 3 millions of tons of CO2 in Europe-15. Even if the temperature level in terminal units can be solved using the cooling coil instead of the heating coil, a back up boiler turns generally out to be required for the coldest days in the year or when simultaneous heating and cooling demands occur.  相似文献   

6.
The Eawag's new headquarters “Forum Chriesbach” is an exemplary illustration of a ‘sustainable’ construction design for office buildings. With a unique combination of architectural and technical elements the building reaches a very low 88 kWh/m2 overall primary energy consumption, which is significantly lower than the Swiss Passive House standard, Minergie-P. A monitoring and evaluation project shows that the building is heated mainly by using the sun and internal heat gains from lighting, electrical appliances and occupants, resulting in an extremely low space heating demand. Cooling is provided by natural night time ventilation and the earth-coupled air intake, which pre-cools supply air and provides free cooling for computer servers. However, values for embodied energy and electricity consumption remain significant, even with partial on-site electricity production using photovoltaics. TRNSYS computer simulations show the contributions of individual building services to the overall energy balance and indicate that the building is resilient towards changes in parameters such as climate or occupancy density. Measurements confirm comfortable room temperatures below 26 °C, even during an extremely hot summer period, and 20-23 °C in the winter season. An economic analysis reveals additional costs of only 5% compared to a conventionally constructed building and a payback-time of 13 years.  相似文献   

7.
Die Bezeichnungen “Niedrigenergie”‐ und “Passiv”‐Haus beschreiben verschiedene Grade der Energieeffizienz von Gebäuden im Zusammenhang mit Richtlinien und Standards unterschiedlicher europäischer Länder. In den letzten Jahren gab es viele Diskussionen über die Vor‐ und Nachteile von Niedrigenergie‐, Passiv‐ und neuerdings auch Plusenergiehäusern. In diesem Kontext zeigt der vorliegende Beitrag eine detaillierte Bewertung von Wohnungseinheiten in zwei Wohnhäusern in Wien, Österreich. Eines dieser Gebäude ist ein Niedrigenergiehaus, während das andere die Kriterien eines Passivhauses erfüllt. Da beide Gebäude gleichzeitig von denselben Baufirmen am selben Grundstück errichtet wurden und sich in Konstruktion und Grundrissen gleichen, bieten sie ein geeignetes Beispiel für eine vergleichende Performance‐Einschätzung: Der Hauptunterschied zwischen den Gebäuden liegt (abgesehen von stärkerer Dämmung des Passivhauses) im Lüftungssystem: Passivhäuser verwenden kontrollierte Lüftungssysteme, während in Niedrigenergiehäusern der Luftaustausch hauptsächlich durch Fensterlüftung vonstatten geht. Der Vergleich der Gebäude basiert auf gemessenen innenklimatischen Bedingungen (Lufttemperatur, relative Luftfeuchte und CO2‐Konzentration) in jeweils zwei Einheiten jedes Gebäudes über einen Zeitraum von fünf Monaten aufgezeichnet. Außerdem wurden die Gebäude hinsichtlich Energieverbrauch (Heizung und Strom), grauer Energie für die Bauteile, CO2‐Emissionen (sowohl für Bauteile als auch im Betrieb) und Konstruktionskosten verglichen. A comparison of passive and low‐energy buildings using the example of two apartment blocks in Austria. The terms “low‐energy” and “passive” denote different levels of energy performance of buildings in the context of guidelines and standards in a number of European countries. In the last few years, there have been many discussions as to the benefits and drawbacks of low‐energy and passive (and recently, energy‐plus) buildings. In this context, the present contribution includes a detailed assessment of apartment units in two building blocks in Vienna, Austria. One of these blocks may be characterized as low‐energy, while the other one adheres to the benchmarks for passive buildings. As these blocks have been erected on the same site and at the same time (with many similar construction and layout features), they provide a proper case in point for a comparative performance assessment: the main difference between the two blocks is, setting aside the higher insulation level of the passive building, the ventilation system. Apartments in the passive block use controlled ventilation, whereas the low‐energy apartments use mainly window ventilation. The comparative assessment of these buildings was based on measured indoor parameters (indoor air temperature, relative humidity, and CO2 concentration) in two units of each block over a period of five months. Moreover, the apartments were assessed regarding actual energy use (heating, electricity), embodied energy for construction, CO2 emissions (both for construction and operation), and construction costs.  相似文献   

8.
This paper aims to study the various parameters that affect the energy performance of commercial buildings in Singapore. The parameters are diverse, ranging from characteristics of construction of the walls and windows, to the various system settings and types within the building. Building energy performance is measured via two key indexes, namely, the Envelope Thermal Transfer Value (ETTV) and the annual cooling energy requirement (Ec). Parameters related to these two indexes are identified. An additional parameter, the solar absorptance of the wall, is further incorporated to calibrate the ETTV equation. A relative ranking on the functional parameters of ETTV has been performed to evaluate their effectiveness in lowering the ETTV of buildings. In addition, the impact of using cladding on ETTV is also studied. A correlation for Ec, expressed in the form of a simple linear equation, has been developed. This correlation accounts for the internal building loads, envelope loads, operating schedules and efficiency of the cooling equipment. Finally, ETTV and Ec have been employed to study the effects of chiller over-sizing and ventilation rates on building cooling energy. In the pursuit for better energy-efficient buildings, the approach presented in this paper contributes to the construct of sustainable energy-efficient built-environment.  相似文献   

9.
Over a three years period, an aquifer thermal energy storage system was monitored in combination with a heat pump for heating and cooling of the ventilation air in a Belgian hospital. The installation was one of the first and largest ground source heat pump systems in Belgium. Groundwater flows and temperatures were monitored as well as the energy flows of the heat pumps and the energy demand of the building. The resulting energy balance of the building showed that the primary energy consumption of the heat pump system is 71% lower in comparison with a reference installation based on common gas-fired boilers and water cooling machines. This corresponds to a CO2-reduction of 1280 ton over the whole measuring period. The overall seasonal performance factor (SPF) for heating was 5.9 while the ATES system delivered cooling at an efficiency factor of 26.1. Furthermore, the economic analysis showed an annual cost reduction of k€ 54 as compared to the reference installation, resulting in a simple payback time of 8.4 years, excluding subsidies.  相似文献   

10.
在分析贵阳市气候特点及实例建筑空调负荷特性的基础上,采用建筑环境模拟软件DeST对实例建筑室内基础室温以及全年建筑冷热负荷进行模拟,在分析模拟结果的基础上,结合贵阳市气候特点,提出如下三条贵阳市降低建筑空调能耗建议:1)舒适性空调设计应首先满足冬季采暖,然后考虑夏季制冷;2)自然通风是夏季降温的优先考虑方式,过渡季节调节是降低建筑制冷能耗的重要手段;3)增加围护结构保温和控制窗墙比是降低建筑采暖能耗的首要手段。研究结果不但能对贵阳市的建筑节能提供参考,而且还对广大温和地区建筑节能有参考意义。  相似文献   

11.
Thermal insulation is one of the most effective energy conservation measures for cooling and heating in buildings. Therefore, determining and selecting the optimum thickness of insulation is the main subject of many engineering investigations. In this study, the determination of optimum insulation thickness on external walls of buildings is comparatively analyzed based on annual heating and cooling loads. The transmission loads, calculated by using measured long-term meteorological data for selected cities, are fed into an economic model (P1P2 method) in order to determine the optimum insulation thickness. The degree-hours method that is the simplest and most intuitive way of estimating the annual energy consumption of a building is used in this study. The results show that the use of insulation in building walls with respect to cooling degree-hours is more significant for energy savings compared to heating degree-hours in Turkey's warmest zone. The optimum insulation thickness varies between 3.2 and 3.8 cm; the energy savings varies between 8.47 and 12.19 $/m2; and the payback period varies between 3.39 and 3.81 years depending on the cooling degree-hours. On the other hand, for heating load, insulation thickness varies between 1.6 and 2.7 cm, energy savings varies between 2.2 and 6.6 $/m2, and payback periods vary between 4.15 and 5.47 years.  相似文献   

12.
The space heating demand of residential buildings can be decreased by improved insulation, reduced air leakage and by heat recovery from ventilation air. However, these measures result in an increased use of materials. As the energy for building operation decreases, the relative importance of the energy used in the production phase increases and influences optimization aimed at minimizing the life cycle energy use. The life cycle primary energy use of buildings also depends on the energy supply systems. In this work we analyse primary energy use and CO2 emission for the production and operation of conventional and low-energy residential buildings. Different types of energy supply systems are included in the analysis. We show that for a conventional and a low-energy building the primary energy use for production can be up to 45% and 60%, respectively, of the total, depending on the energy supply system, and with larger variations for conventional buildings. The primary energy used and the CO2 emission resulting from production are lower for wood-framed constructions than for concrete-framed constructions. The primary energy use and the CO2 emission depend strongly on the energy supply, for both conventional and low-energy buildings. For example, a single-family house from the 1970s heated with biomass-based district heating with cogeneration has 70% lower operational primary energy use than if heated with fuel-based electricity. The specific primary energy use with district heating was 40% lower than that of an electrically heated passive row house.  相似文献   

13.
A great amount of world energy demand is connected to the built environment. Electricity use in the commercial buildings, accounts for about one-third of the total energy consumption in Turkey and fully air-conditioned office buildings are important commercial electricity end-users since the mid-1990s. In the presented paper, the interactions between different conditions, control strategies and heating/cooling loads in office buildings in the four major climatic zones in Turkey – hot summer and cold winter, mild, hot summer and warm winter, hot and humid summer and warm winter – through building energy simulation program has been evaluated. The simulation results are compared with the values obtained from site measurements done in an office building located in Istanbul. The site-recorded data and simulation results are compared and analyzed. This verified model was used as a means to examine some energy conservation opportunities on annual cooling, heating and total building load at four major cities which were selected as a representative of the four climatic regions in Turkey. The effect of the parameters like the climatic conditions (location), insulation and thermal mass, aspect ratio, color of external surfaces, shading, window systems including window area and glazing system, ventilation rates and different outdoor air control strategies on annual building energy requirements is examined and the results are presented for each city.  相似文献   

14.
The building sector is one of the highest energy consumers in Austria. The potential to save energy in existing buildings is very high. Current Austrian policy incentives encourage home owners to renovate buildings to meet the European requirements, reduce energy consumption, and reduce CO2 emissions. Nevertheless, there are often discrepancies between the measured and calculated energy consumption results despite efforts to take parameters into account such as the exact geometry and thermal properties of the building, energy demand for hot water, heating, cooling, ventilation systems, and lighting in the planning phase for selecting the best reconstruction option. To find the answer to this problem, many buildings are carefully investigated with the help of measurements, interviews, and simulations. This paper presents the analysis and results of the investigation of the impact of lifestyle on the energy demand of a single family house. The impact on energy performance of the most important parameters was observed by systematically changing parameters such as changing from a decentralized to a centralized heating system, considering various technologies and fuels for producing electricity and heat, use of renewable energy sources. Different occupant behaviours were changed systematically. The effects of these measures are analysed with respect to primary energy use, CO2 emissions and energy costs. The results of these investigations show that the lifestyle and occupants’ living standard is mainly responsible for the differences between the calculated and measured energy consumption.  相似文献   

15.
基于ANN的绿色办公建筑HVAC系统运行能耗预测   总被引:1,自引:0,他引:1  
办公建筑中暖通空调系统(HVAC系统)的运行能耗占总能耗比例较高。随着绿色建筑的大力推广,准确预测绿色办公建筑HVAC系统能耗是建筑运行优化的关键。研究以天津市某绿色办公建筑为研究对象,根据绿色办公建筑G中的HVAC系统——地源热泵系统和空调通风系统能耗的实际监测数据,建立了基于人工神经网络的能耗预测模型。研究结果表明,建立的分类多层感知器神经网络预测模型预测精度最好,仅基于气象参数及时间能够精确的预测建筑HVAC系统的小时能耗,为我国绿色办公建筑的设计和运行优化提供科学支持。  相似文献   

16.
ABSTRACT

Many studies have investigated the impact of global warming on energy consumption. In this study, the morphing method and EnergyPlus (E+) software were used to investigate the impact of climate change on commercial building energy use under the A2 medium-CO2. emission scenario. The study simulated electricity and gas consumption of nine types of commercial buildings in eight cities, representing three climate zones in Florida. The nine types of commercial buildings included apartments, hotels, offices, and schools. The energy simulation results showed the future trends of growth and reduction in electricity and gas consumption for cooling and heating in TMY2 (TMY3), 2020, 2050, and 2080 in the eight selected cities. In general, gas and electricity demands for heating are projected to decrease, and electricity demand for cooling increases, at different rates in various areas of Florida. The study provides guidance for policy‐makers and utility companies as they craft their response to climate change in various regions of Florida.  相似文献   

17.
以上海地区某办公建筑为例,基于EnergyPlus能耗模拟,探讨了围护结构性能提升和暖通空调系统优化这2条节能技术路径对夏热冬冷地区办公建筑降低供暖空调全年能耗的有效性.结果 表明:围护结构性能提升的节能潜力较小,经济性较差;单纯提高围护结构保温隔热性能并不能保证降低建筑年耗冷量,应综合分析全年供热供冷能耗确定围护结构...  相似文献   

18.
Principal component analysis of dry-bulb temperature, wet-bulb temperature and global solar radiation was considered, and a new climatic index (principal component Z) determined for two emissions scenarios – low and medium forcing. Multi-year building energy simulations were conducted for generic air-conditioned office buildings in Harbin, Beijing, Shanghai, Kunming and Hong Kong, representing the five major architectural climates in China. Regression models were developed to correlate the simulated monthly heating and cooling loads and building energy use with the corresponding Z. The coefficient of determination (R2) was largely within 0.78–0.99, indicating strong correlation. A decreasing trend of heating load and an increasing trend of cooling load due to climate change in future years were observed. For low forcing, the overall impact on the total building energy use would vary from 4.2% reduction in severe cold Harbin (heating-dominated) in the north to 4.3% increase in subtropical Hong Kong (cooling-dominated) in the south. In Beijing and Shanghai where heating and cooling are both important, the average annual building energy use in 2001–2100 would only be about 0.8% and 0.7% higher than that in 1971–2000, respectively.  相似文献   

19.
我国建筑耗能状况及有效的节能途径   总被引:146,自引:19,他引:146  
江亿 《暖通空调》2005,35(5):30-40
简要分析了我国建筑能源消耗状况,从用能特点出发,对建筑物和建筑用能途径进行了新的分类,给出各类的现状、问题和节能潜力。在此基础上列出为实现建筑节能所需要的主要技术与产品研究领域和政策研究与保障机制。文中列出的关键技术研究为:基于模拟分析的建筑节能优化设计;新型建筑围护结构材料与部品;通风装置与排风热回收装置;热泵技术;降低输配系统能源消耗的技术;集中空调的温度湿度独立控制技术;建筑自动化系统的节能优化控制;楼宇式燃气驱动的热电冷三联供技术;燃煤燃气联合供热和末端调峰技术;节能灯、节能灯具与控制。有关政策与保障机制的研究问题为:建筑能耗数据的统计系统;住宅能耗标识方法与保障机制;大型公共建筑能耗评估与用能配额制;各种建筑用能装置的能耗标识标准与方法。  相似文献   

20.
Many of a building’s systems, including heating, cooling, lighting and ventilation, work separately with each other as ‘isolated islands’. While separate systems do not typically work optimally in terms of total performance, integrated control has the potential to improve energy efficiency, occupant comfort and satisfaction and cost efficiency. Preceding studies also have stressed the needs for individual control and usability in order to achieve occupant satisfaction. First, this paper provides a solution concept for integrated control for a space and describes various inputs and outputs of integrated control. As an example, an optimisation strategy for discontinuous use of buildings is presented. The optimisation strategy was first simulated and then implemented in a real building. Second, modular user interfaces for adjusting environmental conditions are provided in the paper. The user interfaces modules are based on user research and usability testing to avoid the usability problems that have been identified in many studies regarding user control of indoor environments. The modules can be utilised in different user interface configurations for different types of spaces in a building.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号