共查询到20条相似文献,搜索用时 15 毫秒
1.
A two-photon excitable small organic molecule (abbreviated as TP-NH 2) with large two-photon absorption cross section and competitive fluorescence quantum yield was prepared, which emitted fluorescence in the visible region upon excitation at 800 nm. Using the TP-NH 2 molecule as an energy donor, a two-photon excitation fluorescence resonance energy-transfer (TPE-FRET) based homogeneous immunoassay method was proposed. The donor and the acceptor (DABS-Cl, a dark quencher) were labeled to bovine serum albumin (BSA) separately, and anti-BSA protein was determined by employing an antibody bridging assay scheme. Rabbit anti-BSA serum containing other biomolecules was intentionally used as the sample to introduce interference. A parallel assay was performed using the traditional one-photon excitation FRET model, which failed to carry out quantitative determination due to the serious background luminescence arising from those biomolecules in the sample. The TPE-FRET model showed its strong ability to overcome the problem of autofluorescence and provided satisfying analytical performance. Quite good sensitivity and wide linear range (0.05-2.5 nM) for anti-BSA protein was obtained. The results of this work suggest that TPE-FRET could be a promising technique for homogeneous assays excluding separation steps, especially in complicated biological sample matrixes. 相似文献
2.
A homogeneous and noncompetitive immunoassay based on the enhanced fluorescence resonance energy transfer by leucine zipper interaction 总被引:3,自引:0,他引:3
Fluorescence resonance energy transfer (FRET) between two GFP variants is a powerful technique to describe protein-protein interaction in a biological system. However, it has a limitation that the two variants tethered to the respective proteins have to be in sufficient proximity upon binding, which is often difficult to attain by simple N- or C-terminal fusions. Here we describe a novel method to significantly enhance FRET between GFP variant-tagged proteins with the use of leucine zippers. For the homogeneous sandwich immunoassay of a high molecular weight antigen human serum albumin (HSA), two separate single-chain Fvs recognizing distant epitopes of HSA were respectively fused with fluorescence donor ECFP or acceptor EYFP, and FRET between the two was analyzed by fluorescence spectrometry. Because these two proteins did not give any detectable FRET uponantigen addition, we tethered each protein with a leucine zipper motif (c-Jun or FosB) at the C-terminus to help the neighborhood of the GFP variants. Upon antigen addition, the new pairs showed significant antigen-dependent FRET. By exchanging the binding domains, the method will find a range of applications for the assay of other proteins and their interactions in vitro or in vivo. 相似文献
3.
We previously presented a homogeneous noncompetitive assay principle based on quenching of the fluorescence of europium(III) chelate. This assay principle has now been applied to the measurement of 17beta-estradiol (E2) using europium(III) chelate labeled estradiol specific antibody Fab fragment (Eu(III)-Fab) as a donor and E2 conjugated with nonfluorescent QSY21 dye as an acceptor. Fluorescence could be measured only from those Eu(III)-Fab that were bound to E2 of the sample, while the fluorescence of the Eu(III)-Fab that were not occupied by E2 were quenched by E2-QSY21 conjugates. The performance of the assay was tested both in buffer and in the presence of serum. Because approximately half of the Fabs were incapable of binding to E2, the maximum quenching efficiency was only 55%. The lowest limits of detection were 18 and 64 pM in buffer and serum-based calibrators, respectively. The highest measurable concentrations were 0.4 nM in buffer and 1 nM in serum. The presented noncompetitive assay principle requires only one binder, and it can be applied to other haptens as well, providing that a suitable antibody is available. 相似文献
4.
Matrix metalloproteinase-2 (MMP-2) is a very important biomarker in blood. Presently, sensitive and selective determination of MMP-2 directly in blood samples is still a challenging job because of the high complexity of the sample matrix. In this work, we reported a new homogeneous biosensor for MMP-2 based on fluorescence resonance energy transfer (FRET) from upconversion phosphors (UCPs) to carbon nanoparticles (CNPs). A polypeptide chain (NH(2)-GHHYYGPLGVRGC-COOH) comprising both the specific MMP-2 substrate domain (PLGVR) and a π-rich motif (HHYY) was designed and linked to the surface of UCPs at the C terminus. The FRET process was initiated by the π-π interaction between the peptide and CNPs, which thus quenched the fluorescence of the donor. Upon the cleavage of the substrate by the protease at the amide bond between Gly and Val, the donor was separated from the acceptor while the π-rich motif stayed on the acceptor. As a result, the fluorescence of the donor was restored. The fluorescence recovery was found to be proportional to the concentration of MMP-2 within the range from 10-500 pg/mL in an aqueous solution. The quantification limit of this sensor was at least 1 order of magnitude lower than that of other reported assays for MMP-2. The sensor was used to determine the MMP-2 level directly in human plasma and whole blood samples with satisfactory results obtained. Owing to the hypersensitivity of the method, clinical samples of only less than 1 μL were needed for accurate quantification, which can be meaningful in MMP-2-related clinical and bioanalytical applications. 相似文献
5.
Rantanen T Päkkilä H Jämsen L Kuningas K Ukonaho T Lövgren T Soukka T 《Analytical chemistry》2007,79(16):6312-6318
In fluorescence resonance energy transfer (FRET)-based assays, spectral separation of acceptor emission from donor emission is a common problem affecting the assay sensitivity. The challenge derives from small Stokes shifts characteristic to conventional fluorescent dyes resulting in leakage of donor emission to the measurement window intended only to collect the acceptor emission. We have studied a FRET-based homogeneous bioaffinity assay utilizing a tandem dye acceptor with a large pseudo-Stokes shift (139 nm). The tandem dye was constructed using B-phycoerythrin as an absorber and multiple Alexa Fluor 680 dyes as emitters. As a donor, we employed upconverting phosphor particles, which uniquely emit at visible wavelengths under low-energy infrared excitation enabling the fluorescence measurements free from autofluorescence even without time-resolved detection. With the tandem dye, it was possible to achieve four times higher signal from a single binding event compared to the conventional Alexa Fluor 680 dye alone. Tandem dyes are widely used in cytometry and other multiplex purposes, but their applications can be expanded to fluorescence-based homogeneous assays. Both the optimal excitation and emission wavelengths of tandem dye can be tuned to a desired region by choosing appropriate fluorophores enabling specifically designed acceptor dyes with large Stokes shift. 相似文献
6.
The miniaturization of a homogeneous competitive immunoassay to a final assay volume of 70 nL is described. As the sample carrier, disposable plastic nanotiter plates (NTP) with dimensions of 2 x 2 cm2 containing 25 x 25 wells, corresponding to approximately 15,000 wells on a traditional 96-well microtiter plate footprint, were used. Sample handling was accomplished by a piezoelectrically actuated micropipet. To reduce evaporation while pipetting the assays, the NTP was handled in a closed humid chamber and cooled to the point of condensation. To avoid washing steps, a homogeneous assay was developed that was based on energy-transfer (ET). As a model system, an antibody-based assay for the detection of the environmentally relevant compound, simazine, in drinking water was chosen. Antibodies were labeled with the long-wavelength-excitable sulfoindocyanine dye Cy5 (donor), and a tracer was synthesized by labeling BSA with a triazine derivative and the acceptor dye Cy5.5. At low analyte concentrations, the tracer was preferably bound to the antibody binding sites. As a result of the close proximity of Cy5.5 and Cy5, an efficient quenching of the Cy5 fluorescence occurred. Higher analyte concentrations led to a progressive binding of the analyte to the antibody binding sites. The increased Cy5 fluorescence was determined by using a scanning laser-induced fluorescence detector. The limit of detection (LOD), using an antibody concentration of 20 nM, was 0.32 microg/L, or 1.11 x 10(-16) mol of simazine. In comparison, the LOD of the 96-well microtiter-plate-based ET immunoassay (micro-ETIA) was 0.15 microg/L, or 1.87 x 10(-13) mol. The LOD of the optimized micro-ETIA at 1 nM IgG, was 0.01 microg/L. 相似文献
7.
A competitive immunoassay based on chemiluminescence resonance energy transfer (CRET) on the magnetic beads (MBs) is developed for the detection of human immunoglobulin G (IgG). In this protocol, carboxyl-modified MBs were conjugated with horseradish peroxidase (HRP)-labeled goat antihuman IgG (HRP-anti-IgG) and incubated with a limited amount of fluorescein isothiocyanate (FITC)-labeled human IgG to immobilize the antibody-antigen immune complex on the surface of the MBs, which was further incubated with the target analyte (human IgG) for competitive immunoreaction and separated magnetically to remove the supernatant. The chemiluminescence (CL) buffer (containing luminol and H(2)O(2)) was then added, and the CRET from donor luminol to acceptor FITC in the immunocomplex on the surface of MBs occured immediately. The present protocol was evaluated for the competitive immunoassay of human IgG, and a linear relationship between CL intensity ratio (R = I(425)/I(525)) and human IgG concentration in the range of 0.2-4.0 nM was obtained with a correlation coefficient of 0.9965. The regression equation was expressed as R = 1.9871C + 2.4616, and a detection limit of 2.9 × 10(-11) M was obtained. The present method was successfully applied for the detection of IgG in human serum. The results indicate that the present protocol is quite promising for the application of CRET in immunoassays. It could also be developed for detection of other antigen-antibody immune complexes by using the corresponding antigens and respective antibodies. 相似文献
8.
A naturally occurring aptazyme, the glmS ribozyme, is adapted to an assay for glucosamine 6-phosphate, an effector molecule for the aptazyme. In the assay, binding of analyte allosterically activates aptazyme to cleave a fluorescently labeled oligonucleotide substrate. The extent of reaction, and hence analyte concentration, is detected by either fluorescence resonance energy transfer (FRET) or capillary electrophoresis with laser-induced fluorescence (CE-LIF). With FRET, assay signal is the rate of increase in FRET in presence of analyte. With CE-LIF, the assay signal is the peak height of cleavage product formed after a fixed incubation time. The assay has a linear response up to 100 (CE-LIF) or 500 microM (FRET) and detection limit of approximately 500 nM for glucosamine 6-phosphate under single-turnover conditions. When substrate is present in excess of the aptazyme, it is possible to amplify the signal by multiple turnovers to achieve a 13-fold improvement in sensitivity and detection limit of 50 nM. Successful signal amplification requires a temperature cycle to alternately dissociate cleaved substrate and allow fresh substrate to bind aptazyme. The results show that aptazymes have potential utility as analytical reagents for quantification of effector molecules. 相似文献
9.
A method to visualize and quantify fluorescence resonance energy transfer (FRET) in scattering media is proposed. It combines the ratiometric FRET method with fluorescence molecular tomography (FMT) in continuous wave (CW) mode. To evaluate the performance of the proposed method, experiments on a tissue-mimicking phantom are carried out. The results demonstrate that the proposed approach is capable of visualizing and quantifying the FRET distribution in scattering media, which implies the further application of the ratiometric assay in in vivo studies. 相似文献
10.
In aqueous solutions, the fluorescence of the intramolecular fluorescence resonance energy-transfer (FRET) system 1 was strongly quenched, because of close contact between the donor and acceptor moieties. FRET occurred, and the acceptor fluorescence was increased, by adding beta-cyclodextrin (beta-CD) to aqueous solutions of 1. Spectral analysis supported the idea that the FRET enhancement was due to the formation of an inclusion complex of the coumarin moiety in beta-CD, resulting in separation of the fluorophores. On the basis of this result, we propose that covalent binding of coumarin to beta-CD will provide a FRET cassette molecule. So, compound 2 bearing beta-CD covalently was designed and synthesized. Fluorescence intensity of 2 was enhanced markedly compared to the intensity of 3. Applying this FRET system, various FRET probes that will be useful for ratio imaging and also the high-throughput screening will be provided. 相似文献
11.
Medintz IL Clapp AR Brunel FM Tiefenbrunn T Uyeda HT Chang EL Deschamps JR Dawson PE Mattoussi H 《Nature materials》2006,5(7):581-589
Proteases are enzymes that catalyse the breaking of specific peptide bonds in proteins and polypeptides. They are heavily involved in many normal biological processes as well as in diseases, including cancer, stroke and infection. In fact, proteolytic activity is sometimes used as a marker for some cancer types. Here we present luminescent quantum dot (QD) bioconjugates designed to detect proteolytic activity by fluorescence resonance energy transfer. To achieve this, we developed a modular peptide structure which allowed us to attach dye-labelled substrates for the proteases caspase-1, thrombin, collagenase and chymotrypsin to the QD surface. The fluorescence resonance energy transfer efficiency within these nanoassemblies is easily controlled, and proteolytic assays were carried out under both excess enzyme and excess substrate conditions. These assays provide quantitative data including enzymatic velocity, Michaelis-Menten kinetic parameters, and mechanisms of enzymatic inhibition. We also screened a number of inhibitory compounds against the QD-thrombin conjugate. This technology is not limited to sensing proteases, but may be amenable to monitoring other enzymatic modifications. 相似文献
12.
Fluorescence resonance energy transfer (FRET) characteristics, including the efficiency, donor-acceptor distance, and binding strength of six fluorescent protein (FP)-quantum dot (QD) pairs were quantified, demonstrating that FPs are efficient acceptors for QD donors with up to 90% quenching of QD fluorescence and that polyhistidine coordination to QD core-shell surface is a straightforward and effective means of conjugating proteins to commercially available QDs. This provides a novel approach to developing QD-based FRET probes for biomedical applications. 相似文献
13.
Chen L Zhang X Zhang C Zhou G Zhang W Xiang D He Z Wang H 《Analytical chemistry》2011,83(19):7316-7322
We have developed a new fluorescent immune ensemble probe comprised of a conjugated lower toxic water-soluble CdTe:Zn(2+) quantum dots (QDs) and Ru(bpy)(2)(mcbpy-O-Su-ester)(PF(6))(2)- antibody complex (Ru-Ab) for the dual-color determination of human enterovirus 71 (EV71) in homogeneous solution. EV71 monoantibody was easily covalently conjugated with Ru(bpy)(2)(mcbpy-O-Su-ester)(PF(6))(2) to form a stable complex Ru-Ab, which acted both as an effective quencher of QDs fluorescence and the capture probe of virus antigen EV71. Herein, the target EV71 can break up the low fluorescent ionic ensemble by antigen-antibody combination to set free the fluorescent QDs and restore the fluorescence of QDs whereas the fluorescence intensity of Ru-Ab remains the same. Thus, the determination of EV71 by the complex Ru-Ab and QDs can be realized via the restoration of QDs fluorescence upon addition of EV71 and even can be directly evaluated by the ratio of green-colored QDs fluorescence intensity to Ru-Ab red-colored fluorescence intensity. The green-colored fluorescence of QDs was very sensitive to the change of EV71 concentration, and its fluorescence intensity increased with the increase of EV71 concentration between 1.8 ng/mL and 12 μg/mL. With this method, EV71 was detected at subnanogram per milliliter concentration in the presence of 160 μg/mL bovine serum albumin. More importantly, this strategy can be used as a universal method for any protein or virus by changing conjugated antibodies in disease early diagnosis providing a fast and promising clinical approach for virus determination. In a word, a simple, fast, sensitive, and highly selective assay for EV71 has been described. It could be applied in real sample analysis with a satisfactory result. It was notable that the sensor could not only achieve rapid and precise quantitative determination of protein/virus by fluorescent intensity but also could be applied in semiquantitative protein/virus determination by digital visualization. 相似文献
14.
Jeon SM Yoo SI Kim KS Kim DH Sohn BH 《Journal of nanoscience and nanotechnology》2010,10(10):6819-6824
We controlled the fluorescence resonance energy transfer (FRET) between ZnO nanoparticles and rhodamine B (RB) within multilayered thin films prepared by the layer-by-layer (LbL) assembling method. Positively charged ZnO nanoparticles and RB-labeled poly(allyamine hydrochloride) (RB-PAH) were accurately incorporated into LbL assemblies of polyelectrolytes. The distance between ZnO nanoparticles and RB-PAH was adjusted by varying the number of layers of pure polyelectrolytes, leading to the controlled FRET from ZnO nanoparticles to RB-PAH. 相似文献
15.
Fluorescence resonance energy transfer (FRET)-based nanosensors with quantum dots (QDs) as donors and organic dyes as acceptors have long been of interest for the detection of biomolecules such as nucleic acids, but their low FRET efficiency in bulk solution has prevented the sensitive detection of nucleic acids due to the large size of the QDs and the long length of nucleic acids. Here we describe a novel approach to improve the detection sensitivity of QD-based nanosensors using single-molecule detection in a capillary flow. In comparison with bulk measurement, single-molecule detection in a capillary flow possesses the unique advantages of improved FRET efficiency, high sensitivity, prevention of photobleaching, and low sample consumption. Greater FRET efficiency was obtained due to the deformation of DNA in the capillary stream. This technique can be easily extended to sensitive bimolecular analysis in microfluidic chips, and it may also offer a promising approach to study the deformation of small nucleic acids in fluid flow. 相似文献
16.
Zauner T Berger-Hoffmann R Müller K Hoffmann R Zuchner T 《Analytical chemistry》2011,83(19):7356-7363
Proteases are widely used in analytical sciences and play a central role in several widespread diseases. Thus, there is an immense need for highly adaptable and sensitive assays for the detection and monitoring of various proteolytic enzymes. We established a simple protease fluorescence resonance energy transfer (pro-FRET) assay for the determination of protease activities, which could in principle be adapted for the detection of all proteases. As proof of principle, we demonstrated the potential of our method using trypsin and enteropeptidase in complex biological mixtures. Briefly, the assay is based on the cleavage of a FRET peptide substrate, which results in a dramatic increase of the donor fluorescence. The assay was highly sensitive and fast for both proteases. The detection limits for trypsin and enteropeptidase in Escherichia coli lysate were 100 and 10 amol, respectively. The improved sensitivity for enteropeptidase was due to the application of an enzyme cascade, which leads to signal amplification. The pro-FRET assay is highly specific as even high concentrations of other proteases did not result in significant background signals. In conclusion, this sensitive and simple assay can be performed in complex biological mixtures and can be easily adapted to act as a versatile tool for the sensitive detection of proteases. 相似文献
17.
Kaman WE Hulst AG van Alphen PT Roffel S van der Schans MJ Merkel T van Belkum A Bikker FJ 《Analytical chemistry》2011,83(7):2511-2517
We describe the development of a highly specific enzyme-based fluorescence resonance energy transfer (FRET) assay for easy and rapid detection both in vitro and in vivo of Bacillus spp., among which are the members of the B. cereus group. Synthetic substrates for B. anthracis proteases were designed and exposed to secreted enzymes of a broad spectrum of bacterial species. The rational design of the substrates was based on the fact that the presence of D-amino acids in the target is highly specific for bacterial proteases. The designed D-amino acids containing substrates appeared to be specific for B. anthracis but also for several other Bacillus spp. and for both vegetative cells and spores. With the use of mass spectrometry (MS), cleavage products of the substrates could be detected in sera of B. anthracis infected mice but not in healthy mice. Due to the presence of mirrored amino acids present in the substrate, the substrates showed high species specificity, and enzyme isolation and purification was redundant. The substrate wherein the D-amino acid was replaced by its L-isomer showed a loss of specificity. In conclusion, with the use of these substrates a rapid tool for detection of B. anthracis spores and diagnosis of anthrax infection is at hand. We are the first who present fluorogenic substrates for detection of bacterial proteolytic enzymes that can be directly applied in situ by the use of D-oriented amino acids. 相似文献
18.
Single-molecule fluorescence resonance energy transfer in nanopipets: improving distance resolution and concentration range 总被引:1,自引:0,他引:1
In recent years fluorescence resonance energy transfer (FRET) has widely been used to measure distances, binding, and distance dynamics at the single-molecule (sm) level. Some basic constraints of smFRET are the limited distance resolution owing to low photon statistics and the restriction to high affinity interactions. We demonstrate that by confining molecules in nanopipets with an inner diameter of approximately 100 nm at the tip, FRET can be measured with improved photon statistics and at up to 50-fold higher concentrations. The flow of the donor/acceptor (Cy3B/ATTO647N) labeled double-stranded DNA conjugates was established by electrokinetic forces. Because of the small inner diameter of the nanopipet, every molecule passing the tip is detected applying alternating laser excitation (ALEX). Thus, the technique offers the advantage to study interactions with smaller association constants (<10(9) M-1) using minute sample amounts (<5 microL). The improved photon statistics reduces shot-noise contributions and results in sharper FRET distributions. Experimental results are supported by Monte Carlo simulations which also explain the occurrence of two populations in burst size distributions measured in nanopipet experiments. Because of the confinement of the molecules in nanopipets, the widths of FRET histograms are reduced to a degree where shot-noise is not the only limiting factor but also conformational dynamics of the linkers used to attach the chromophores have to be considered. In addition, our experiments emphasize the influence of photoinduced dark states on both the mean energy transfer efficiency and the width of FRET histograms. 相似文献
19.
This work demonstrates an efficient and bio-friendly fluorescence resonance energy transfer (FRET) system based on lanthanide-doped inorganic nanoparticles. A facile aqueous route was used to synthesize the CePO(4):Tb nanorods with homogeneous colloidal dispersion, which emits a bright green light with a high quantum yield (~0.36) and a long fluorescence lifetime (~3.50 ms) upon UV excitation. Upon treatment of CePO(4):Tb with aqueous Rhodamine B (RhB), an efficient FRET occurs from the Tb(3+) to the RhB molecules, giving rise to well resolved and ratiometric emissions of donors and acceptors, respectively, with an energy transfer efficiency of up to 0.85. When incubated with HeLa cells at 37?°C, the CePO(4):Tb treated with RhB shows bright intracellular luminescence, indicating that it can be successfully internalized inside the cells and the FRET remains in the living cells. Moreover, the cytotoxic measurements demonstrate good biocompatibility and low cytotoxicity of our present FRET system. The advantages presented above including high quantum yield of donors, high energy transfer efficiency, ratiometric fluorescent emission and good biocompatibility, indicate the high potential of the CePO(4):Tb/RhB FRET system for monitoring biological events. 相似文献