首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
提出了一种化学链制氢(chemical looping hydr-ogen,CLH)与固体氧化物燃料电池(solid oxide fuel,SOFC)相结合的新型发电系统,并利用?分析法研究了该新型发电循环。在该系统中,氢气由化学链制氢子系统产生,循环材料是FeO和Fe3O4。固体氧化物燃料电池的余热在化学链制氢子系统中被利用,并通过化学链中的还原反应转化为化学能。在?平衡的基础上进行了系统关键参数的分析,并对化学链关键过程进行了研究。同时,由于化学链可以实现CO2无能耗的分离,新系统可以在分离二氧化碳的条件下实现净效率61.2%。?分析法表明,新系统获得高性能的主要原因是废热的梯级利用和高效制氢。结果表明,这种新型的热循环是实现甲烷化学能高效利用同时实现低能耗分离CO2的有效途径。  相似文献   

2.
为研究天然气自热重整质子交换膜燃料电池各级化学反应热的高效利用模式,提出一种耦合利用重整制氢各级反应热与燃料电池余热的发电系统,利用天然气自热重整技术制取富氢合成气,以“温度对口、梯级利用”原则,利用重整子系统各级化学反应热与燃料电池子系统余热逐级加热自热重整用工质水产生高温蒸汽,形成回热系统。通过建立能量、质量、电化学反应方程多物理场耦合的系统模型,分析系统氢气产量与发电效率,并研究进料温度、蒸汽燃料比、空气燃料比对系统性能的影响。结果表明,该系统发电效率为47.41%,较无耦合回热系统提高5.4百分点,适宜的进料温度450~500 ℃,蒸汽燃料比1.75~2.00,空气燃料比2.35~2.65。  相似文献   

3.
铁基载氧体化学链制氢特性实验研究   总被引:2,自引:0,他引:2  
化学链制氢(chemical looping hydrogen generation,CLHG)是一种可以内在实现CO2分离的新型制氢技术.它由燃料、水蒸气和空气反应器组成.该文选取CO为燃料,研究气体燃料的制氢性能及影响因素.并选用Fe2O3作载氧体,Al2O3和TiO2作载体,采用机械混合法,制备了Fe2O3(90%)+Al2O3(10%)、Fe2O3(60%)+Al2O3(40%),Fe2O3(60%)+TiO2(40%)3种载氧体.在900℃下,进行了还原、水蒸气氧化和空气氧化十次循环实验.实验发现,3种载氧体在循环中活性保持稳定,没有出现失活和烧结现象;增加载氧体中惰性载体的质量分数可以提高载氧体的活性;由于TiO2与Fe2O3结合生成惰性的FeTiO3,导致基于TiO2的载氧体活性低于同等质量分数下基于Al2O3的载氧体;惰性载体自身的吸湿性和水蒸气制氢氛围会导致颗粒的团聚.温度升高有利于还原反应,增加了载氧体的还原深度并提高了水蒸气氧化时氢气的产量;同时高温抑制了还原过程中的析碳.还原时气体燃料在单级燃料反应器内由于热力学平衡无法实现完全转化,可考虑设计新型的燃料反应器.  相似文献   

4.
乙醇水蒸气重整制氢的镍基催化剂性能   总被引:5,自引:0,他引:5  
吴锋  刘媛  孙杰  陈实  王国庆 《电源技术》2005,29(7):434-437
燃料电池直接将储存在燃料和氧化剂中的化学能高效地转变成电能。高纯、无毒的氢是燃料电池的理想燃料。目前,液体燃料重整是一种较好的制氢方式,乙醇作为重整制氢的液体燃料有可再生,无毒,不含易使燃料电池铂电极中毒的硫等优点,是非常适合的环保型重整制氢燃料。采用浸渍法制备了添加助剂的镍基乙醇水蒸气重整制氢催化剂,考察稀土金属氧化物助剂CeO2和Y2O3对Ni/g-Al2O3上乙醇水蒸气重整制氢反应活性的影响。结果表明:助剂有利于改善催化剂的物相组成,使其在较低的温度下具有较高的氢气产率和较低的甲烷选择性。其中,CeO2的助剂作用较优,催化剂16%Ni/CeO2/g-Al2O3在600℃的氢气产率可达4.7,生成CO2、CO和CH4的选择性分别为63.5%、23.4%和12.4%。  相似文献   

5.
《华东电力》2013,(2):297-301
对基于Fe2O3载氧体模拟煤气化学链燃烧的各反应进行了热力学分析研究,获得了Fe2O3在模拟煤气的氛围中各还原反应的热力学参数随温度的变化关系。基于Gibbs自由能最小化方法建立了基于Fe2O3载氧体化学链燃烧反应模型,模拟了载氧体与燃料的摩尔比、温度对燃料应器中各平衡产物的影响。  相似文献   

6.
采用溶胶-凝胶法制备不同助剂掺杂改性的ZnFe2O4氧载体,探究不同助剂(Sr、Ce、La和Al)对其性能的影响。化学链制氢实验在固定床反应器中进行,结果表明:添加助剂能有效提高氧载体的性能,单位质量氧载体H2产量从高到低依次为La>Sr>Al>Ce,La改性的ZnFe2O4氧载体反应活性最高。结合X射线衍射、H2-程序升温还原、吸附比表面测试法等表征手段和化学链制氢实验对掺杂助剂La的氧载体物理化学性质作进一步分析,考察不同掺杂质量分数对氧载体反应性能的影响。结果表明:添加质量分数为12%La助剂的ZnFe2O4在化学链制氢反应中单位H2产量最高;La助剂的加入提高了氧载体的比表面积,促进氧空位的形成,加快晶格氧的迁移速率,有利于化学链制氢反应。  相似文献   

7.
苏鹏  林彬  赵炜  羊羿 《电源技术》2021,45(4):466-469
甲烷水蒸气重整固体氧化物燃料电池(SOFC)系统主要包含了甲烷水蒸气重整制氢/供气单元、SOFC电堆单元、电化学测试单元等,系统通过换热器将SOFC电堆单元的余热回收再利用,可实现能源的梯级高效利用,具有良好的发展前景.针对系统中影响因素较多的甲烷水蒸气重整供氢单元进行了研究,通过调整重整反应的不同重整温度、水碳比等影响因素,对比分析了不同工况下CH4转化率的变化规律;在最优工况下,实现了甲烷水蒸气重整制氢/供气单元和SOFC电堆单元的直接耦合,对SOFC电堆进行了性能测试,并对比分析了耦合后的系统性能,提出进一步的优化方案.  相似文献   

8.
富氧燃烧为二氧化碳的捕集与储存提供了非常有效的途径,然而富氧燃烧用到的深冷空气分离(深冷空分)制氧技术会消耗大量电能,并且随着制氧体积分数的增加,制氧功耗也会增加。化学链制氧是一种有效的为富氧燃烧提供低能耗高纯度氧气的制氧方法。本文采用加压吸氧化学链制氧方法解决常规化学链制氧中还原反应吸热量过大问题,并对耦合深冷空分制氧、常规化学链制氧、加压吸氧化学链制氧的富氧燃烧流程进行模拟分析对比。结果表明:加压吸氧化学链制氧甲烷消耗量为常规化学链的12.7%,耦合加压吸氧化学链制氧的富氧燃烧系统净效率可以达到34.0%,且在基础投资和运行成本上均优于深冷空分制氧系统和常规化学链制氧系统。  相似文献   

9.
本文利用AspenPlus模拟软件,构建了煤炭热解煤气吸附强化重整制氢工艺流程,对强化重整、煅烧再生、蒸汽余热发电等单元进行了详细的模拟.在钙碳比为2.75,水碳比为3.5,重整温度650℃条件下,对不同重整压力(0.5、1.0、1.5、2.0MPa)工况进行了模拟,利用热效率和?效率、制氢能耗、水耗和单位煤气制氢率等...  相似文献   

10.
主要研究在典型的化学链氧解耦燃烧(chemical looping combustion with oxygen uncoupling,CLOU)气氛下水蒸气对煤焦转化特性的影响。通过单因素分析,模拟在不同温度、煤焦颗粒粒径、氧气浓度、水蒸气浓度下开展。研究结果表明,在低O_2浓度(1%)下,水蒸气气化反应可明显增加煤焦转化速率;而在较高的O_2浓度下(5%),水蒸气对煤焦转化速率的贡献则不明显。通过对O2浓度分布以及局部转化率等煤焦转化过程中的参数分析认为,水蒸气气化反应主要发生于颗粒内部,而氧化反应主要发生在颗粒外部。  相似文献   

11.
基于CaSO4载氧体的煤化学链燃烧技术,采用小型流化床模拟燃料反应器,对煤气化–CaSO4还原反应展开实验研究。水蒸气作为气化及流化介质,煤气化气体产物(CO、CH4、H2)与CaSO4发生还原反应。结果表明,煤气化是煤气化–CaSO4还原反应过程的控制步骤;CH4、H2累积量随温度升高呈减少趋势,高于950 ℃时反应产物中无CH4、H2,温度低于950 ℃时CO累积量随温度增高亦呈减少趋势, 但高于950 ℃时CO累积量随温度升高反而略有增加;煤气化反应的碳气化效率以及煤气化–CaSO4还原反应的C–CO2转化率均随温度而增大,最大值分别达95.9%、91.5%。CaSO4在CH4、H2气氛的反应活性随温度升高而显著提高,而在CO气氛下其反应活性较弱;煤气化–CaSO4还原反应后的载氧体颗粒出现轻微磨损,扫描电镜分析表明反应后载氧体颗粒的比表面积增大,950 ℃时存在轻微烧结现象,但对载氧体反应活性影响不大。  相似文献   

12.
基于CaSO4载氧体的煤化学链燃烧分离CO2研究   总被引:2,自引:0,他引:2  
提出基于CaSO4载氧体的串行流化床煤化学链燃烧分离CO2技术,分析了燃料反应器内水煤气反应、CaSO4以及金属氧化物载氧体还原反应热力学特性参数,表明CaSO4是煤化学链燃烧反应理想的载氧体。应用Aspen Plus软件,建立了基于CaSO4煤化学链燃烧串行流化床内各种物质的质量平衡、化学平衡和能量平衡模型,进行模拟研究;结果表明,随着燃料反应器温度不断提高,燃料反应器气体产物中H2O体积浓度基本维持不变,CO2浓度略有降低,CO迅速上升,而H2缓慢增大;H2S随反应温度呈幂指数规律衰减,SO2显著递增,表明燃料反应器产物中SO2和H2S中的硫不全部是煤中硫,部分硫来自于CaSO4载氧体竞争反应的产物;载氧体循环倍率随燃料反应器温度升高呈幂指数级增加,随空气反应器温度呈幂指数级递减。  相似文献   

13.
采用CHEMKIN化学反应动力学软件及计算流体力学软件CFD等数值方法详细探讨了在微尺度内甲烷自热重整反应中温度和压力对出口组分摩尔分数的影响和催化壁面总积碳量的影响.结果表明,当温度超过873 K,会促进水煤气转化反应的发生,导致氢气减少、水和一氧化碳增加,用于燃料电池的微型反应器内甲烷自热重整的温度不宜超过1000K,此时重整合成气中氢气的摩尔分数可达54.05%,一氧化碳的摩尔分数为9.98%;从能效、积炭和燃料电池的原料气的要求分析,用于燃料电池的微型反应器内甲烷自热重整的反应压力应低于1.8105Pa;同时在1000K左右,积炭过程和消炭过程可到达一个平衡阶段,有利于催化剂寿命的延长。  相似文献   

14.
燃煤CO2减排技术   总被引:8,自引:0,他引:8  
燃煤CO2等温室气体的大量排放是造成全球气候变暖的一个重要原因。阐述了我国CO2的排放状况,概括了减少燃煤CO2排放的3种途径:提高能源效率、改革传统的煤炭燃烧利用方式、烟气中CO2的捕获与储存。综述了国际社会减排CO2的努力以及各国新一代的洁净煤技术计划。着重介绍了几种燃煤CO2减排的新技术,包括CaO碳酸化-煅烧循环的CO2分离(CCR)技术、O2/CO2循环燃烧技术及化学链燃烧(CLC)技术。比较了CaO碳酸化-煅烧循环的CO2分离技术与使用MEA的吸收技术的经济性。提出了一类用于化学链燃烧的新型非金属氧载体,给出了这些氧载体在与不同气体燃料组成的反应系统的热力学以及动力学特性的一些初步结论。  相似文献   

15.
为解决可再生能源高不确定性与平稳氢气需求间的冲突,提出一种耦合光伏电解水、生物质气化、天然气重整技术的综合制氢系统鲁棒优化配置方法。该方法同时考虑了光伏出力和生物质含水量不确定性,并利用不同制氢技术间物质和能量双重耦合提高系统运行能效。所提两阶段鲁棒优化模型在第一阶段确定各种制氢装置和储电、储氧、储气装置投资决策,第二阶段确定满足运行约束的综合制氢系统优化调度方案,并得到最差场景。针对鲁棒优化模型特点,采用适用于内层含整数变量的嵌套列和约束生成算法求解所提模型。通过算例验证了所提配置方法可以在保证平稳、绿色氢气的同时显著提升经济效益,具有较好鲁棒性,为综合制氢系统的元件选择和规划提供理论参考。  相似文献   

16.
燃料电池的氢源技术--乙醇重整制氢研究进展   总被引:4,自引:2,他引:2  
对燃料电池的氢源技术之一--乙醇重整制氢的相关研究进行了综述.首先,对乙醇重整制氢在燃料电池氢源中所处的地位和占有的优势进行了分析,总结了乙醇重整制氢的反应机理,系统地归纳了国内外对乙醇重整制氢催化剂、乙醇氢分离膜及相关材料的研究进展,并对目前两种乙醇重整质子交换膜燃料电池系统的研究进行了对比分析.同时,对乙醇重整燃料电池系统存在的问题进行了初步探讨,展望了乙醇燃料电池的发展前景.  相似文献   

17.
化学链燃烧能在能量释放的同时有效分离CO2。该文用ASPEN PLUS软件对Ni/NiO/NiAl2O4作载氧体的整体煤气化链式燃烧联合循环系统进行了模拟,研究了管式气化方式和德士古(Texaco)气化方式对联合循环系统性能的影响,并对2种气化系统进行了比较。模拟结果表明,空气反应器温度1 200℃,补燃后透平进口温度1 350 ℃,管式气化系统效率为44.36%,德士古气化系统效率为41.81%;空气反应器温度从1 000 ℃升高到1 200 ℃,管式气化系统CO2减排量从174 g/(kW×h)减少到75 g/(kW×h),德士古气化系统CO2减排量从260 g/(kW×h)减少到133 g/(kW×h);补燃后透平进口温度从1 300 ℃升高到1 500 ℃,管式气化系统效率从43.96%提高到45.53%,德士古气化系统效率从41.14%提高到42.9%;在一定的透平进口温度下,存在最佳压气机压缩比。  相似文献   

18.
In recent years, fuel cell electrical vehicles have offered promise of improving the urban environment. In particular, hydrogen‐fueled FCEVs have been considered for urban use because of their excellent characteristics such as short start‐up time, high responsiveness, and zero emissions. On the other hand, as far as hydrogen production is concerned, large amounts of CO2 are exhausted into the atmosphere by the process of LNG reforming. In our research, we studied the utilization of LNG latent heat for hydrogen gas production as well as the liquefied hydrogen process. CO2 capture in the liquid or solid state from hydrogen gas production by LNG was also studied. The results of our research show that the latent heat of LNG is very effective in cooling hydrogen gas for the conventional hydrogen liquefaction process. However, the latent heat LNG is not available for the LNG reforming process. If we want to use LNG latent heat for this process, we must develop a new hydrogen gas production process. In this new method, both hydrogen and CO2 are cooled directly by LNG, and CO2 is removed from the reforming gas. In order to make this method practical, we must develop a new type of heat exchanger to prevent solid CO2 from interfering with performance. © 2004 Wiley Periodicals, Inc. Electr Eng Jpn, 147(4): 32–42, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.10299  相似文献   

19.
研究了微秒脉冲和纳秒脉冲介质阻挡放电等离子体CH_4转化过程。对比了两种脉冲电源激励的CH_4介质阻挡放电等离子体特性,考察了不同脉冲电源激励时重复频率、流速和输入功率对CH_4转化效率及气态产物分布的影响,并对不同实验条件下CH_4转化反应路径的选择进行了分析。实验结果发现,CH_4转化气态产物均以H_2、C2H_6为主,CH_4转化率和H_2产率随着重复频率的上升而下降,但随流速的增大而减小。相同重复频率和流速条件下,微秒脉冲电源激励时CH_4转化率和H_2产率较高,而纳秒脉冲电源激励时具有能量利用率高的优势。在高重复频率、低流速条件下,在石英管内壁和金属电极上会产生更多的积炭和液态烃,因此导致反应的碳氢平衡降低。微秒脉冲电源激励时,随着输入功率的升高氢气和乙烷选择性下降,纳秒脉冲电源激励时呈现出相反的趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号