首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Automatic scratch testing is an expedient technique for comparatively evaluating the cohesive failure load and adhesion failure load of thin coatings on various substrates. In combination with SEM examination of the scratch track, this technique has been used herein to detect and evaluate various effects on coating strength and adhesion. For soft Triballoy T-800 and Stellite SF-6 cobalt-base coatings on 4340 low alloy steel, adhesion was found to be strong and failure was found to be cohesive in the coating. In the presence of a plated chromium interlayer, pre-existing cracks lowered substantially the cohesive failure load, which was also lowered by an increase in the coating deposition pressure. The spacing of transverse cracks within the coating was found in all cases to decrease with increasing applied normal load. In soft aluminum coatings on depleted uranium (DU)-0.75% Ti alloy specimens, alloying aluminum with magnesium or zinc enhanced the coating strength and adhesion. In (Al-Mg) coatings on this substrate, a smoother surface led to a lower friction coefficient and a higher adhesion failure load. In hard, thin TiN coatings on 17-4 PH steel, a lower bias voltage applied to the substrate yielded higher cohesive and adhesion failure loads. In hydrogenated amorphous SiC thin coatings on 4340 steel, loss of hydrogen by annealing converted the residual compressive stresses into tensile stresses and lowered both the cohesive and the adhesion failure loads. Finally, automatic scratch testing proved helpful in determining delamination loads in multilayer TiN/Ti/TiN coatings on DU-0.75% Ti alloy.  相似文献   

2.
A key requirement of an effective coating is its adequate adhesion to the substrate. Thus, reliable test methods to evaluate coating adhesion and to characterize the deposition parameters affecting it are necessary for the systematic development of such coatings. The conventional technique for measuring diamond coating adhesion, the scratch test, is unreliable because of wear of the stylus and influences of the substrate. Thus, a noncontact technique (compression test) of evaluating the adhesion of diamond coatings on brittle substrates was modelled and developed. This method utilizes the differences in Young's modulus between the coating and the substrate via application of an external load in order to generate interfacial stresses and debond the coating. An innovative three-dimensional numerical model, based on combining the variational and boundary integral approaches, was utilized to link the indirect (i.e. load) to the direct (i.e. debond shear stress or elastic energy of delamination) characteristics of adhesion. Factors affecting the adhesion strength of the diamond coatings are discussed in relation to the process parameters. This test offers an excellent alternative to conventional techniques for measuring the adhesion strength of diamond coatings on brittle substrates.  相似文献   

3.
《Polymer》2007,48(3):841-848
An elastic model is developed to estimate the interfacial strength between a submicron surface coating and a compliant substrate. The analysis uses a shear-lag model and assumes the plane-stress state in the surface coating. The critical indentation load for the indentation-induced delamination of the coating from the substrate increases with the third power of the indentation depth and is a linear function of the reciprocal of the coating thickness. The indentation-induced delamination of SR399 ultrathin surface coatings over acrylic substrate has been evaluated, using the nanonindentation technique for coating thicknesses of 47, 125, 220 and 3000 nm. For the submicron coatings, the dependence of the critical indentation load on the coating thickness supports the elastic model. The interfacial strength is found to be 46.9 MPa. In contrast, the polymeric coating of 3000 nm displays multiple “excursions” in the loading curve, and the critical indentation load is a linear function of the indentation depth.  相似文献   

4.
Due to the very thin nature of DLC coatings, the substrate must carry the main part of the applied load. If the substrate has insufficient strength to carry the contact load and thus support the coating, plastic deformation will occur, leading to premature failure of the coating. The challenge to improve the properties of hard DLC coatings by thermo-chemical pre-treatment of the substrate has gained much attention in recent years, leading to a new method called duplex treatment. In the present study, a hydrogen-free hard carbon coating deposited on plasma nitrided AISI 4140 steel was investigated with respect to microhardness, residual stress, scratch adhesion and dry sliding wear resistance. The pin-on-disc results showed that nitriding of the substrate improves the wear resistance of the hydrogen-free hard carbon coating as compared to the hardened substrate. The improvement can be related to the increased load carrying capacity of the steel substrate and to improved coating to substrate adhesion.  相似文献   

5.
A comparative study of scratch behavior of single‐ and bi‐layer hard coatings deposited on poly(methyl methacrylate) substrates was investigated. Trimethylolpropane triacrylate (TMPTA) and pentaerythriol triacrylate (PETA) with different chemical structure were chosen as a top layer for bilayer coatings, and soft base layer was introduced with varying thickness from 5 to 15 µm to demonstrate effect of soft base layer thickness on scratch properties. The scratch properties were characterized by a progressive load scratch test in terms of the onset of critical normal load for coating failure (i.e., crack and delamination). The introduction of soft base layer caused increase of critical normal load for the onset of coating failures, which implied the excellent scratch properties in both TMPTA and PETA systems. Moreover, it was found that thicker soft base layer led to better scratch properties. POLYM. ENG. SCI., 56:528–535, 2016. © 2016 Society of Plastics Engineers  相似文献   

6.
Scratch resistance of aqueous two-component (2K-PUR) polyurethane coatings deposited on glass and polycarbonate was investigated by constant mode scratch tests. Penetration and residual depths as well as scratch widths were experimentally evaluated. A first analytical model was applied to estimate plowing and scratch hardness of the polyurethane coatings according to contact pressure and load rate and the corresponding 3D maps were drawn out. The experimental findings allowed mapping the scratch response the polyurethane coatings came through varying the applied load, load rate and substrate compliance, thus establishing the basis for the development of useful tools for failure prediction of the investigated coating systems in a broad range of operational conditions.  相似文献   

7.
Scratches that result in delamination are common in multilayer polymeric laminates and coatings. In this study, the adhesive failure among a set of model double-layer epoxy coatings was experimentally investigated and numerically analyzed using the finite element method modeling based on the maximum principal stress criterion. The adhesive failure on the model epoxy coatings was generated using an ASTM-standard linearly increasing normal load scratch test. The parametric study reveals that delamination may initiate at locations underneath both scratch shoulder and behind scratch tip during scratching. It is also found that the magnitude and direction of peak tensile maximum principal stress developed at the interface are affected by both the laminate thickness and the material parameters of each layer. The parametric analysis shows that the onset of delamination can be delayed by possessing a softer base layer, a top or base layer with a higher yield stress, a base layer with a lower strain-hardening slope, and a lower surface coefficient of friction. The Mode I delamination at the interface will become dominant in a multilayer system when the base layer has a higher modulus and a lower strain hardening slope. The usefulness of the present study for determining the delamination resistance of multilayer polymeric laminates and coatings is discussed.  相似文献   

8.
X-ray photoelectron spectroscopy (XPS) has been used to determine the mechanism responsible for debonding of an epoxy/polyamide coating from steel during cathodic delamination in 3.5% aqueous NaCl solutions. Coating failure always occurred near the interface between the coating and the oxide. The nitrogen content of the free surface of the prepared coatings was about 10%. However, the nitrogen content of the free surface dropped to only 5% after exposure to 1 N NaOH for four weeks and that of the coating failure surface after cathodic delamination was only about 2%, implying that the failure involved degradation of the polyamide curing agent by hydroxide ions formed at the steel surface by reduction of oxygen. That conclusion was supported by results obtained from curve fitting of C(1s) and O(1s) spectra. The intensity of components in the C(1s) spectra due to C—N and C≡O bonds in amide functional groups decreased significantly after coatings were exposed to NaOH or subjected to cathodic delamination. Small amounts of organic materials characteristic of the coating were observed on the substrate failure surface, perhaps indicating that the failure was cohesive within the coating but very close to the interface or that some products from degradation of the curing agent precipitated on the substrate. Use of silane coupling agents to retard cathodic delamination was also investigated. Coupling agents were added directly to the coating or applied to the substrate as a primer before application of the coating. Significant reduction in the rate of cathodic delamination was seen only when the silane coupling agent was applied to the substrate and cured at elevated temperatures before the epoxy/polyamide coating was applied.  相似文献   

9.
PTFE coatings were deposited on the Si3N4/TiC ceramic substrate by using spray technology. The surface and cross-section micrographs, adhesive force of coatings with substrate, surface roughness and micro-hardness of the coated ceramics were examined. The friction and wear behaviors of ceramic samples with and without coatings were investigated through carrying out dry sliding friction tests against WC/Co ball. The test results indicated that the coated ceramics exhibited rougher surface and lower micro-hardness, and the PTFE coatings can significantly reduce the surface friction and adhesive wear of ceramics. The friction performance of PTFE-coated sample was affected by applied load due to the lower surface hardness and shear strength of coatings, and the main wear failure mechanisms were abrasion wear, coating delamination and flaking. It can be considered that deposition of PTFE coatings is a promising approach to improve the friction and wear behavior of ceramic substrate.  相似文献   

10.
X-ray photoelectron spectroscopy (XPS) has been used to determine the mechanism responsible for debonding of an epoxy/polyamide coating from steel during cathodic delamination in 3.5% aqueous NaCl solutions. Coating failure always occurred near the interface between the coating and the oxide. The nitrogen content of the free surface of the prepared coatings was about 10%. However, the nitrogen content of the free surface dropped to only 5% after exposure to 1 N NaOH for four weeks and that of the coating failure surface after cathodic delamination was only about 2%, implying that the failure involved degradation of the polyamide curing agent by hydroxide ions formed at the steel surface by reduction of oxygen. That conclusion was supported by results obtained from curve fitting of C(1s) and O(1s) spectra. The intensity of components in the C(1s) spectra due to C—N and C≡O bonds in amide functional groups decreased significantly after coatings were exposed to NaOH or subjected to cathodic delamination. Small amounts of organic materials characteristic of the coating were observed on the substrate failure surface, perhaps indicating that the failure was cohesive within the coating but very close to the interface or that some products from degradation of the curing agent precipitated on the substrate. Use of silane coupling agents to retard cathodic delamination was also investigated. Coupling agents were added directly to the coating or applied to the substrate as a primer before application of the coating. Significant reduction in the rate of cathodic delamination was seen only when the silane coupling agent was applied to the substrate and cured at elevated temperatures before the epoxy/polyamide coating was applied.  相似文献   

11.
Crack arrest and multiple Cracking can be observed during the fracture of coated substrates even in the absence of coating delamination. Clearly, it would be useful to understand the mechanics and material parameters that control this process. The conditions for the arrest of the initial crack were modeled using an approximate stress intensity factor approach, and it was determined there is a critical coating thickness, below which the multiple cracking occurs. The critical thickness was determined to depend on the coating strength, substrate toughness, and the relative Young's moduli of the coating and the substrate. The effects of these parameters and residual stresses on the fracture behavior are discussed. The results of the model are compared to the experimental data on a SiC-coated graphite (sandwich composite).  相似文献   

12.
Interfacial adhesion characteristics of nanocrystalline and microcrystalline diamond coatings deposited on tungsten carbide (WC–Co) substrates were studied and analysed using a scratch tester. Coating failure events and critical point loads were identified by acoustic emission, tangential force measurement and image analysis carried out on the scratch track. In this respect, enhanced scratch resistance properties were observed in microcrystalline diamond (MCD) coating in comparison to nanocrystalline diamond (NCD) coating. Significant difference in critical loads for adhesive failure was observed for MCD and NCD coatings. These loads were 42 N and 20 N for MCD and NCD coatings, respectively. The reason for these two distinctly different adhesive characteristics was attributed to the microstructure of the respective coatings. The surface morphologies at critical failure point and wedge spallation regions of the scratch tracks were completely different for NCD and MCD coatings. Critical point regions were analysed by Raman stress mapping to study the scratch induced residual stresses in the strained diamond flakes and deformed coating of the scratch track. In this respect, high tensile stresses were observed in the regions of critical failure. This behaviour is strongly dependent on magnitude of stress and nature of deformation during the scratch test of NCD and MCD coatings.  相似文献   

13.
Adherent diamond coatings on steel and copper were obtained by using a titanium interlayer. The adhesion of the coatings was evaluated by scratch tests and micro-indentation tests. The diamond coating on steel exhibited a much higher critical load than on copper, as revealed by the scratch tests. However, an observation on the back of the scratch-delaminated film and on the corresponding substrate surface showed that the detachment occurred between the diamond film and the titanium interlayer. Therefore, the difference in the critical scratch load is due mainly to a substrate effect, making it difficult to compare the adhesion of different coatings.On the other hand, Knoop indentation tests showed interesting results: a small indentation load causes round spallation in the film with no observable crack. An exponential sink-in deformation under the indentation is proposed, y=−a exp(−bx). The coating adhesion is considered to be equivalent to the deformation stress at the edge of the spallation zone. The adhesion of diamond coatings on steel and copper with a titanium interlayer is evaluated quantitatively using this model. Furthermore, a thermal quench method is proposed to estimate the coating adhesion. The results found are in agreement with the indentation model.  相似文献   

14.
The conventional contact fatigue test was applied to evaluate the bond strength between hard coatings and substrates. It was designated as an interfacial fatigue test for coated samples and was conducted with either cylindrical or spherical rolling. A shear stress range at the interface was derived based on the mechanics of elasticity and used as a measure of the interfacial fatigue strength between the coating and the substrate. It was found that the coating exfoliated after the coated specimen was subjected to a number of cycles under cyclic contact loading, but it would be intact when the cyclic load was decreased to a critical value. The shear stress range corresponding to this critical load was defined as the bond strength which would reflect the change in the physical and/or chemical state in the interfacial region. In the calculation of the shear stress range, the effects of the thickness and Young's modulus of the coatings were taken into account.  相似文献   

15.
The effect of adhesion, film thickness, and substrate hardness on the scratch behavior of poly(carbonate) (PC) films was investigated. Films of various thickness were prepared by spin-coating solutions of PC in chloroform onto glass, ferroplate, Al 1100, Al 6022, and Al 6111 substrates. Adhesion between the films and the substrates was controlled by pretreatment of the substrates and the thickness of the films was controlled by the concentration of the PC solutions. Adhesion of the films to the glass substrates was measured by a blister test. Scratch tests were performed using a custom-built, progressive-load scratch tester with interchangeable diamond indenters; the resulting scratches were observed by optical microscopy, atomic force microscopy (AFM), and environmental scanning electron microscopy (ESEM). The critical normal load (i.e., the smallest applied normal load for which delamination of the film from the substrate was observed) was used as a criterion to determine the scratch resistance of the films. It was found that better film/substrate adhesion resulted in a higher critical load for delamination. As film thickness increased, the critical load and, thus, scratch resistance also increased. Substrate hardness had a strong influence on the scratch behavior of the PC films. For a low-hardness substrate (i.e., Al 1100), the work from scratching was mainly consumed by deforming the substrate. In the case of substrates with intermediate hardness (i.e., Al 6022, Al 6111, and ferroplate), the substrates were more resistant to the stresses that were generated in the films; hence, the deformation of the substrates was less severe. A high-hardness substrate (i.e., glass) resisted the applied load and resulted in higher stress concentrations in the films and at the interface. Consequently, a rougher surface inside the scratch track was observed.  相似文献   

16.
The nanoscratch test, used in this study, quantitatively characterizes the scratch behaviour of coatings. Some of the obtained parameters are plastic and elastic deformation, critical load to start the scratch, chipping or other change in the scratch mechanism of the coating. The knowledge of the scratch mechanism allows the optimisation of the material behaviour. In the present study the scratch resistance with the wear resistance has been correlated for nanocomposite coatings. Knowledge of mechanical properties extracted from the scratch test, supports the optimization of the coating against wear. The study was applied to nanocomposite coatings with different polymer matrices, different percentages and nature of nanoparticles.  相似文献   

17.
The deposition of adherent coatings such as diamond-like carbon (DLC) on substrates of iron-based materials is difficult to obtain for two reasons: high residual compressive stress occurs in the inner film formation, and the mismatch of thermal expansion coefficient between steel and DLC film generates delamination effects. In order to determine the carbonitriding temperature prior to film deposition, the steel substrate and the DLC films were analyzed for their microstructure and mechanical properties of adhesion as a function of temperature. The technique used to deposit the coating was DC-pulsed plasma enhanced chemical vapor deposition. The delamination distances and the critical load of the film were obtained by scratch testing. The surface analysis by X-ray diffraction indicated the formation of nitride phases on the steel. Raman spectroscopy showed the fraction of sp3 carbon bonds in DLC films. Hardness profiling was used to verify the extent of the interface modified by carbonitriding along the cross section. For this, the steel sample with the appropriate surface modification to have high adhesion of the DLC film was used.  相似文献   

18.
涂层与基体界面结合强度是硬质涂层材料一个关键的性能指标。应用压痕法和十字交叉法测试了硅基/类金刚石(diamond-like carbon,DLC)涂层的界面结合强度。结果表明:利用Vickers压痕法和Hertz压痕法测量所得硅基/DLC涂层的临界载荷分别为0.981N和300N。用Vickers压痕法测量时,载荷达到临界载荷后涂层将产生环状开裂,当载荷进一步增大时,还会产生径向裂纹;对于Hertz压痕法,载荷从300N增加到800N时,涂层环状裂纹从1个增加到4个。通过采用十字交叉法测量得到硅基/DLC涂层界面拉伸强度和剪切强度分别为(8.9±2.7)MPa和(20.1±2.6)MPa,表明该涂层抗剪切性能良好,拉伸分离后界面比剪切分离后界面的均匀性更好。压痕法和十字交叉法评价硬质涂层的界面强度简单易行,结果准确,具有广泛的应用前景。  相似文献   

19.
The effect of adhesion, film thickness, and substrate hardness on the scratch behavior of poly(carbonate) (PC) films was investigated. Films of various thickness were prepared by spin-coating solutions of PC in chloroform onto glass, ferroplate, Al 1100, Al 6022, and Al 6111 substrates. Adhesion between the films and the substrates was controlled by pretreatment of the substrates and the thickness of the films was controlled by the concentration of the PC solutions. Adhesion of the films to the glass substrates was measured by a blister test. Scratch tests were performed using a custom-built, progressive-load scratch tester with interchangeable diamond indenters; the resulting scratches were observed by optical microscopy, atomic force microscopy (AFM), and environmental scanning electron microscopy (ESEM). The critical normal load (i.e., the smallest applied normal load for which delamination of the film from the substrate was observed) was used as a criterion to determine the scratch resistance of the films. It was found that better film/substrate adhesion resulted in a higher critical load for delamination. As film thickness increased, the critical load and, thus, scratch resistance also increased. Substrate hardness had a strong influence on the scratch behavior of the PC films. For a low-hardness substrate (i.e., Al 1100), the work from scratching was mainly consumed by deforming the substrate. In the case of substrates with intermediate hardness (i.e., Al 6022, Al 6111, and ferroplate), the substrates were more resistant to the stresses that were generated in the films; hence, the deformation of the substrates was less severe. A high-hardness substrate (i.e., glass) resisted the applied load and resulted in higher stress concentrations in the films and at the interface. Consequently, a rougher surface inside the scratch track was observed.  相似文献   

20.
A tensile mechanical test suiable to measure the adhesion between brittle coatings and ductile substrates was applied to measure the adhesion of painted layers on polypropylene blends. The test involves the tensile deformation of the painted assembly, resulting in the periodic cracking of the brittle coating on the ductile substrate. The interfacial shear strength was determined by measuring the strength of the coating, the thickness of the coating, and the average width of paint fragment after the crack density reaches saturation. Apparent interfacial shear strength was obtained for different paints on the same kind of blend, which gave consistent results over the experimental strain rate range from 10?4 to 10?3 sec?1. Interfacial delamination was studied by optical microscopy (OM) and transmission electron microscopy (TEM). The delamination was observed to mainly occur near the adhesion promoter and substrate interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号