首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
We investigated the properties of C60-based organic field-enect transistors(OFETs)(?) a pentacene passivation layer inserted between the C60 active layer and the gate dielectric.After modification of the pentacene passivation layer,the performance of the devices was considerably improved compared to C60-based OFETs with only a PMMA dielectric.The peak field-effect mobility was up to 1.01 cm2/(V·s) and the on/off ratio shifted to 104.This result indicates that using a pentacene passivation layer is an effective way to improve the performance of N-type OFETs.  相似文献   

2.
We report on a reverse stamping method to produce via-holes in circuits comprising acene-based top-gate organic field-effect transistors (OFETs) having a CYTOP/Al2O3 (by atomic layer deposition) bilayer gate dielectric. This method relies on the weak adhesive force that exists between a small molecule acene film and a polymer to enable easy delamination of the bilayer gate dielectric by using a PDMS stamp. We demonstrate the effectiveness of this method by fabricating simple circuits using top-gate triisopropylsilylethynyl pentacene (TIPS-pentacene)/poly (triarylamine) (PTAA) OFETs.  相似文献   

3.
Low-voltage pentacene organic field-effect transistors (OFETs) with different gate dielectric interfaces are studied and their performance in terms of electrical properties and operational stability is compared. Overall high electrical performance is demonstrated at low voltage by using a 100 nm-thick high-κ gate dielectric layer of aluminum oxide (Al2O3) fabricated by atomic layer deposition (ALD) and modified with hydroxyl-free low-κ polymers like polystyrene (PS), divinyltetramethyldisiloxane-bis(benzocyclobutene) (BCB) (Cyclotene™, Dow Chemicals), and as well as with the widely used octadecyl-trichlorosilane (OTS). Devices with PS and BCB dielectric surfaces exhibit almost similar electrical performance with high field-effect mobilities, low subthreshold voltages, and high on/off current ratios. The higher mobility in pentacene transistors with PS can be correlated to the better structural ordering of pentacene films, as demonstrated by atomic force microscopy (AFM) images and X-ray diffraction (XRD). The devices with PS show good electrical stability under bias stress conditions (VGS = VDS = −10 V for 1 h), resulting in a negligible drop (2%) in saturation current (IDS) in comparison to that in devices with OTS (12%), and to a very high decay (30%) for the devices with BCB.  相似文献   

4.
The thin‐film structures of chemical sensors based on conventional organic field‐effect transistors (OFETs) can limit the sensitivity of the devices toward chemical vapors, because charge carriers in OFETs are usually concentrated within a few molecular layers at the bottom of the organic semiconductor (OSC) film near the dielectric/semiconductor interface. Chemical vapor molecules have to diffuse through the OSC films before they can interact with charge carriers in the OFET conduction channel. It has been demonstrated that OFET ammonia sensors with porous OSC films can be fabricated by a simple vacuum freeze‐drying template method. The resulted devices can have ammonia sensitivity not only much higher than the pristine OFETs with thin‐film structure but also better than any previously reported OFET sensors, to the best of our knowledge. The porous OFETs show a relative sensitivity as high as 340% ppm?1 upon exposure to 10 parts per billion (ppb) NH3. In addition, the devices also exhibit decent selectivity and stability. This general and simple strategy can be applied to a wide range of OFET chemical sensors to improve the device sensitivity.  相似文献   

5.
The stability of organic field-effect transistors (OFETs) under very high humidity condition has been the bottleneck in many applications. In this work, remarkable enhancement in ambient stability and performance of CuPc based OFETs are observed by exploiting the polarization of hydroxyl groups in Poly (vinyl alcohol) (PVA) dielectric layer, which is sandwiched between Al2O3 and Poly (methyl methacrylate) (PMMA) layer. The devices are used to fabricate OFETs based humidity sensors, which show exceptional ambient stability and rapid response to the water molecules in moisture. In a controlled experiment, the sensors demonstrate 0.73 s as response time and 0.52 s as recovery time. Such results are the fastest responses observed on humidity sensors fabricated based on OFETs. The enhanced responses of the sensors are due to the systematic polarization of the hydroxyl groups present in PVA layer by the additional dipole field arising from the adsorbed water molecules, which are also polarized under gate-field. The devices show no variation in threshold voltage as well as field-effect carrier mobility, measured throughout a year under ambient exposure. The specific design of the sensors with tri-layer dielectric system plays crucial role in enhancing the stability and moisture sensitivity, which can make the devices technologically very relevant.  相似文献   

6.
We report on our latest improvements in organic field‐effect transistors (OFETs) using ultra‐thin anodized gate insulators. Anodization of titanium (Ti) is an extremely cheap and simple technique to obtain high‐quality, very thin (~ 7.5 nm), pinhole‐free, and robust gate insulators for OFETs. The anodized insulators have been tested in transistors using pentacene and poly(triarylamine) (PTAA) as active layers. The fabricated devices display low‐threshold, normally “off” OFETs with negligible hysteresis, good carrier mobility, high gate capacitance, and exceptionally low inverse subthreshold slope. Device performance is improved via chemical modification of TiO2 with an octadecyltrichlorosilane (OTS) self‐assembled monolayer (SAM). As the result of this combination of favorable properties, we have demonstrated OFETs that can be operated with voltages well below 1 V.  相似文献   

7.
Gelatin is a natural protein, which works well as the gate dielectric for pentacene/N,N-dioctyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C8) ambipolar organic field-effect transistors (OFETs) in air ambient and in vacuum. An aqueous solution process was used to form the gelatin gate dielectric film on poly(ethylene terephthalate) (PET) by spin-coating and subsequent casting. Pentacene morphology and interface roughness are two major factors affecting the electron and hole field-effect mobility (μFE) values of pentacene/PTCDI-C8 ambipolar OFETs in vacuum and in air ambient. In contrast, water absorption in gelatin has higher contribution to the electron and hole μFE values in air ambient. The ambipolar performance of pentacene/PTCDI-C8 ambipolar OFETs depends on their layer sequence. For example, when PTCDI-C8 is deposited onto pentacene, i.e. in the structure of PTCDI-C8/pentacene, unbalanced ambipolar characteristics appear. In contrast, better ambipolar performance occurs in the structure of pentacene/PTCDI-C8. The optimum ambipolar characteristics with electron μFE of 0.85 cm2 V−1 s−1 and hole μFE of 0.95 cm2 V−1 s−1 occurs at the condition of pentacene (40 nm)/PTCDI-C8 (40 nm). Surprisingly, water absorption plays a crucial role in ambipolar performance. The device performance changes tremendously in pentacene/PTCDI-C8 ambipolar OFETs due to the removal of water out of gelatin in vacuum. The optimum ambipolar characteristics with electron μFE of 0.008 cm2 V−1 s−1 and hole μFE of 0.007 cm2 V−1 s−1 occurs at the condition of pentacene (65 nm)/PTCDI-C8 (40 nm). The roles of layer sequence, relative layer thickness, and water absorption are proposed to explain the ambipolar performance.  相似文献   

8.
In this study, pentacene thin‐film transistors (TFTs) operating at low voltages with high mobilities and low leakage currents are successfully fabricated by the surface modification of the CeO2–SiO2 gate dielectrics. The surface of the gate dielectric plays a crucial role in determining the performance and electrical reliability of the pentacene TFTs. Nearly hysteresis‐free transistors are obtained by passivating the devices with appropriate polymeric dielectrics. After coating with poly(4‐vinylphenol) (PVP), the reduced roughness of the surface induces the formation of uniform and large pentacene grains; moreover, –OH groups on CeO2–SiO2 are terminated by C6H5, resulting in the formation of a more hydrophobic surface. Enhanced pentacene quality and reduced hysteresis is observed in current–voltage (I–V) measurements of the PVP‐coated pentacene TFTs. Since grain boundaries and –OH groups are believed to act as electron traps, an OH‐free and smooth gate dielectric leads to a low trap density at the interface between the pentacene and the gate dielectric. The realization of electrically stable devices that can be operated at low voltages makes the OTFTs excellent candidates for future flexible displays and electronics applications.  相似文献   

9.
Performance of pentacene organic field-effect transistors (OFETs) is significantly improved by treatment of SiO2 with octyltrichlorosilane (OTS-8) compared to octadecyltrichlorosilane (OTS-18). The average hole mobility in these OFETs is increased from 0.4 to 0.8 cm2/Vs when treating the dielectric with OTS-8 versus OTS-18 treated devices. The atomic force microscope (AFM) images show that the OTS-8 treated surface produces much larger grains of pentacene (∼500 nm) compared to OTS-18 (∼100 nm). X-ray diffraction (XRD) results confirmed that the pentacene on OTS-8 is more crystalline compared to the pentacene on OTS-18, resulting in higher hole mobility.  相似文献   

10.
In this paper, we report on a bilayer insulating film based on parylene-c for gate dielectric layers in top-gate/bottom-contact inkjet-printed organic field-effect transistors (OFETs) with indacenodithiophene-co-benzothiadiazole (IDTBT) and poly([N,N’-bis(2-octyldodecyl)-naphthalene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5’-(2,2’-bitthiophene)) (P(NDI2OD-T2)) as with p- and n-channel semiconductors. The thin parylene-c film (t = 210 nm) show large gate leakage density (2.52 nA/cm2 at 25 V) and low breakdown voltage (2.2 MV/cm). In addition, a degraded field-effect mobility (μ) was observed in printed IDTBT and P(NDI2OD-T2) OFETs with the parylene-c single-layered dielectric. X-ray photoelectron spectroscopy (XPS) analysis reveals that the degradation of μ is due to unwanted chemical interaction between parylene-c and the conjugated polymer surface during the parylene-c deposition process. By inserting 50-nm thick poly(methyl-methacrylate) (PMMA) and polystyrene (PS) layer in-between the parylene-c and conjugated polymer film, highly improved gate leakage density and breakdown voltage are achieved. The printed IDTBT and P(NDI2OD-T2) OFETs with a bilayer dielectric compose of parylene-c and PMMA and PS show significantly improved hole and electron μ of 0.47 cm2/Vs and 0.13 cm2/Vs, respectively, and better operation stability. In addition, we demonstrate inkjet-printed polymer complementary inverter with a high voltage gain of 25.7 by applying a PS/parylene-c bilayer dielectric.  相似文献   

11.
A solution-based transparent polymer was investigated as the gate dielectric for organic field-effect transistors (OFETs). Organic thin films (400 nm) are readily fabricated by spin-coating a polyhydrazide solution under ambient conditions on the ITO substrates, followed by annealing at a low temperature (120 °C). The smooth transparent dielectrics exhibited excellent insulating properties with very low leakage current densities of ~10?8 A/cm2. High performance OFETs with evaporated pentacene as organic semiconductor function at a low operate voltage (?15 V). The mobility could reach as high as 0.7 cm2/Vs and on/off current ratio up to 104. Solution-processed TIPS-pentacene OFETs also work well with this polymer dielectric.  相似文献   

12.
Here, a highly crystalline and self‐assembled 6,13‐bis(triisopropylsilylethynyl) pentacene (TIPS‐Pentacene) thin films formed by simple spin‐coating for the fabrication of high‐performance solution‐processed organic field‐effect transistors (OFETs) are reported. Rather than using semiconducting organic small‐molecule–insulating polymer blends for an active layer of an organic transistor, TIPS‐Pentacene organic semiconductor is separately self‐assembled on partially crosslinked poly‐4‐vinylphenol:poly(melamine‐co‐formaldehyde) (PVP:PMF) gate dielectric, which results in a vertically segregated semiconductor‐dielectric film with millimeter‐sized spherulite‐crystalline morphology of TIPS‐Pentacene. The structural and electrical properties of TIPS‐Pentacene/PVP:PMF films have been studied using a combination of polarized optical microscopy, atomic force microscopy, 2D‐grazing incidence wide‐angle X‐ray scattering, and secondary ion mass spectrometry. It is finally demonstrated a high‐performance OFETs with a maximum hole mobility of 3.40 cm2 V?1 s?1 which is, to the best of our knowledge, one of the highest mobility values for TIPS‐Pentacene OFETs fabricated using a conventional solution process. It is expected that this new deposition method would be applicable to other small molecular semiconductor–curable polymer gate dielectric systems for high‐performance organic electronic applications.  相似文献   

13.
TIPs-pentacene OFETs were fabricated on a plastic substrate using polymer nanocomposite dielectric. The blend polymer P(VDF-TrFE)/PMMA (30 wt%) was used as polymer matrix and BaTiO3 nanoparticles modified by 3-glycidoxypropyltrimethoxysilane (GPTMS) were dispersed as ceramic fillers. The effects of different loadings of BaTiO3 on the surface morphology and electrical properties of dielectric films were investigated. The formulation of screen-printable dielectric ink of P(VDF-TrFE)/PMMA/BaTiO3/Silica (SII) was achieved by adding fumed silica as the viscosity modifier. TIPs-pentacene OFETs using SII as the gate dielectric features a mobility of 0.01 cm2/V s, and having a threshold voltage of −6 V. This screen-printable dielectric ink is promising for low operating-voltage fully-printed OFETs.  相似文献   

14.
We investigate the effect of surface topology of a block copolymer/neutral surface/SiO2 trilayered gate insulator on the properties of pentacene organic thin film transistor (OTFT) by the controlled etching of self assembled poly(styrene‐b‐methyl methacrylate) (PS‐b‐PMMA) block copolymer. The rms roughness of the uppermost block copolymer film directly in contact with pentacenes was systematically controlled from 0.27 nm to approximately 12.5 nm by the selective etching of cylindrical PMMA microdomains hexagonally packed and aligned perpendicular to SiO2 layer with 20 and 38 nm of diameter and periodicity, respectively. Both mobility and On/Off ratio were significantly reduced by more than 3 orders of magnitudes with the film roughness in OTFTs having 60 nm thick pentacene active layer. The poor device performance observed with the etched thin film of block copolymer dielectric is attributed to a defective pentacene active layer and the mixed crystalline structure consisting of thin film and bulk phase arising from the massive nucleation of pentacene preferentially at the edge of each cylindrical etched hole.  相似文献   

15.
Nanolamination has entered the spotlight as a novel process for fabricating highly dense nanoscale inorganic alloy films. OFET commercialization requires, above all, excellent dielectric properties of gate dielectric layer. Here, we describe the fabrication and characterization of Al–O–Ti (AT) nanolaminate gate dielectric films using a PEALD process, and their OFET applications. The AT films exhibited a very smooth surface (Rq < 0.3 nm), a high dielectric constant (17.8), and a low leakage current (8.6 × 10−9 A/cm2 at 2 MV/cm) compared to single Al2O3 or TiO2 films. Importantly, a 50 nm thick AT film dramatically enhanced the value of μFET (0.96 cm2/V) on a pentacene device, and the high off-current level in a single TiO2 film was effectively reduced. The nanolamination process removes the drawbacks inherent in each single layer so that the AT film provides excellent dielectric properties suitable for fabricating high-performance OFETs. Triethylsilylethynyl anthradithiophene (TES-ADT), a solution-processable semiconductor, was combined with the AT film in an OFET, and the electrical properties of the device were characterized. The excellent dielectric properties of the AT film render nanolamination a powerful strategy for practical OFET applications.  相似文献   

16.
We report the effect of irradiation using 10 MeV high energy proton beams on pentacene organic field-effect transistors (OFETs). The electrical characteristics of the pentacene OFETs were measured before and after proton beam irradiation with fluence (dose) conditions of 1012, 1013, and 1014 cm−2. After proton beam irradiation with fluences of 1012 or 1013 cm−2, the threshold voltage of the OFET devices shifted to the positive gate voltage direction with an increase in the current level and mobility. In contrast, for a high proton beam fluence condition of 1014 cm−2, the threshold voltage shifted to the negative gate voltage direction with a decrease in the current level and mobility. It is evident from the electrical characteristics of the pentacene OFETs treated with a self-assembled monolayer that these experimental observations can be attributed to the trapped charges in the dielectric layer and pentacene/SiO2 interface. Our study will enhance the understanding of the influence of high energy particles on organic field-effect transistors.  相似文献   

17.
The synthesis of a new tetrathiafulvalene derivative with an electron‐withdrawing benzothiadiazole moiety and its use in thin‐film organic field‐effect transistors (OFETs) are reported. Compared to reported OFETs with other TTF derivatives, a high hole mobility up to 0.73 cm2 V?1 s?1, low off‐current and high on/off ratio up to 105 are demonstrated. In addition, the developed OFETs show fast responsiveness toward chemical vapors of DECP (diethyl chlorophosphate) or POCl3 which are simulants of phosphate‐based nerve agents. In contrast to previously reported OFET‐based sensors, off‐current is used as the output signal, which increases quickly upon exposure to either DECP or POCl3 vapors. High sensitivity is demonstrated toward DECP and POCl3 vapors, with concentrations as low as 10 ppb being detected. These OFETs are also responsive to TNT vapor. The sensing mechanisms for the new type of OFET are discussed.  相似文献   

18.
A key issue in research into organic thin-film transistors (OTFTs) is low-voltage operation. In this study, we fabricated low-voltage operating (below 3V) p-channel, n-channel and ambipolar OTFTs based on pentacene or/and C60 as the active layers, respectively, with an ultrathin AlOX/poly(methyl methacrylate co glycidyl methacrylate) (P(MMA–GMA)) hybrid layer as the gate dielectric. Benefited from the enhanced crystallinity of C60 layer and greatly reduced density of electron trapping states at the interface of channel/dielectric due to the insertion of ultrathin pentacene layer between C60 and P(MMA–GMA), high electron mobility can be achieved in present pentacene/C60 heterostructure based ambipolar OTFTs. The effect of the thickness of pentacene layer and the deposition sequence of pentacene and C60 on the device performance of OTFTs was studied. The highest electron mobility of 3.50 cm2/V s and hole mobility of 0.25 cm2/V s were achieved in the ambipolar OTFT with a pentacene (3.0 nm)/C60 (30 nm) heterostructure.  相似文献   

19.
The origins of hysteresis in organic field‐effect transistors (OFETs) and its applications in organic memory devices is investigated. It is found that the orientations of the hydroxyl groups in poly(vinyl alcohol) (PVA) gate dielectrics are correlated with the hysteresis of transfer characteristics in pentacene‐based OFETs under the forward and backward scan. The applied gate bias partially aligns the orientations of the hydroxyl groups perpendicular to the substrate as characterized by reflective absorption Fourier transform infrared spectroscopy (RA‐FTIR), in which the field‐induced surface dipoles at the pentacene/PVA interface trap charges and cause the hysteresis. Treating PVA with an anhydrous solvent eliminates the residual moisture in the dielectrics layer, allowing for more effective control of the induced dipoles by the applied gate bias. OFETs of dehydrated‐PVA dielectrics present a pronounced shift of the threshold voltage (ΔVTh) of 35.7 V in transfer characteristics, higher than that of 18.5 V for untreated devices and results in sufficient dynamic response for applications in memory elements. This work highlights the usage of non‐ferroelectric gate dielectrics to fabricate OFET memory elements by manipulating the molecular orientations in the dielectrics layer.  相似文献   

20.
Low operating voltage is an important requirement that must be met for industrial adoption of organic field‐effect transistors (OFETs). We report here solution fabricated polymer brush gate insulators with good uniformity, low surface roughness and high capacitance. These ultra thin polymer films, synthesized by atom transfer radical polymerization (ATRP), were used to fabricate low voltage OFETs with both evaporated pentacene and solution deposited poly(3‐hexylthiophene). The semiconductor‐dielectric interfaces in these systems were studied with a variety of methods including scanning force microscopy, grazing incidence X‐ray diffraction and neutron reflectometry. These studies highlighted key differences between the surfaces of brush and spun cast polymethyl methacrylate (PMMA) films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号