首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The voice activity detectors (VADs) based on statistical models have shown impressive performances especially when fairly precise statistical models are employed. Moreover, the accuracy of the VAD utilizing statistical models can be significantly improved when machine-learning techniques are adopted to provide prior knowledge for speech characteristics. In the first part of this paper, we introduce a more accurate and flexible statistical model, the generalized gamma distribution (GΓD) as a new model in the VAD based on the likelihood ratio test. In practice, parameter estimation algorithm based on maximum likelihood principle is also presented. Experimental results show that the VAD algorithm implemented based on GΓD outperform those adopting the conventional Laplacian and Gamma distributions. In the second part of this paper, we introduce machine learning techniques such as a minimum classification error (MCE) and support vector machine (SVM) to exploit automatically prior knowledge obtained from the speech database, which can enhance the performance of the VAD. Firstly, we present a discriminative weight training method based on the MCE criterion. In this approach, the VAD decision rule becomes the geometric mean of optimally weighted likelihood ratios. Secondly, the SVM-based approach is introduced to assist the VAD based on statistical models. In this algorithm, the SVM efficiently classifies the input signal into two classes which are voice active and voice inactive regions with nonlinear boundary. Experimental results show that these training-based approaches can effectively enhance the performance of the VAD.  相似文献   

2.
Model-based approach is one of methods widely used for speaker identification, where a statistical model is used to characterize a specific speaker's voice but no interspeaker information is involved in its parameter estimation. It is observed that interspeaker information is very helpful in discriminating between different speakers. In this paper, we propose a novel method for the use of interspeaker information to improve performance of a model-based speaker identification system. A neural network is employed to capture the interspeaker information from the output space of those statistical models. In order to sufficiently utilize interspeaker information, a rival penalized encoding rule is proposed to design supervised learning pairs. For better generalization, moreover, a query-based learning algorithm is presented to actively select the input data of interest during training of the neural network. Comparative results on the KING speech corpus show that our method leads to a considerable improvement for a model-based speaker identification system.  相似文献   

3.
In this paper, we present a novel approach to voice activity detection (VAD) based on the sparse representation of an input noisy speech over a learned dictionary. First, we investigate the relationship between the signal detection and the sparse representation based on the Bayesian framework. Second, we derive the decision rule and an adaptive threshold based on a likelihood ratio test, by modeling the non-zero elements in the sparse representation as a Gaussian distribution. The experimental results show that the proposed approach outperforms the current statistical model-based methods, such as Gaussian, Laplacian, and Gamma, under white, babble, and vehicle noise conditions.  相似文献   

4.
More than most European cities, Istanbul is experiencing considerable pressure from urban development due to a rapidly increasing population. As a consequence the land use activities in urban and suburban areas are changing dramatically. To provide cost-effective information about the current state and how it is changing in order to develop integrated policies, multi-temporal remotely sensed data, with its synoptic and regular coverage, is being used. Nevertheless, the mapping and monitoring of urban change through remote sensing is difficult owing to the complex urban land use patterns. Although many image processing techniques have been developed for this purpose, they are complicated by differences amongst images caused by differences in the effects of the atmosphere, illumination, and surface moisture. One technique which is relatively unaffected by these problems is based on artificial neural network (ANN) classification algorithms. The main objective of this study was to examine the performance of two ANN classifiers for land use classification using Landsat TM data. Two different supervised ANN approaches were used: the multi layer perceptron (MLP) and the learning vector quantization (LVQ). The performance of these classifiers was compared to the more conventional maximum likelihood approach.  相似文献   

5.
高维心电图数据存在大量不相关特征,基于监督机器学习技术很难同时获得较高敏感性与特异性。在预处理操作心电图数据,如校准基线漂移、去除高频噪声和拟合多项式特征的基础上,提出一种基于监督多元对应分析(MCA)降维技术的分类模型自动分类心跳。该方法离散化连续心电图数据为类属数据,并发展有监督MCA降维技术提取心电图数据关键特征,用各种分类算法自动分类心电图心跳数据。在PTB诊断数据库的心电图数据集上测试结果表明,与几种基于监督机器学习分类技术相比,在监督MCA降维框架中各种分类算法能以较高敏感性和特异性自动分类心电图心跳数据。  相似文献   

6.
This paper shows an improved statistical test for voice activity detection in noise adverse environments. The method is based on a revised contextual likelihood ratio test (LRT) defined over a multiple observation window. The motivations for revising the original multiple observation LRT (MO-LRT) are found in its artificially added hangover mechanism that exhibits an incorrect behavior under different signal-to-noise ratio (SNR) conditions. The new approach defines a maximum a posteriori (MAP) statistical test in which all the global hypotheses on the multiple observation window containing up to one speech-to-nonspeech or nonspeech-to-speech transitions are considered. Thus, the implicit hangover mechanism artificially added by the original method was not found in the revised method so its design can be further improved. With these and other innovations, the proposed method showed a higher speech/nonspeech discrimination accuracy over a wide range of SNR conditions when compared to the original MO-LRT voice activity detector (VAD). Experiments conducted on the AURORA databases and tasks showed that the revised method yields significant improvements in speech recognition performance over standardized VADs such as ITU T G.729 and ETSI AMR for discontinuous voice transmission and the ETSI AFE for distributed speech recognition (DSR), as well as over recently reported methods.  相似文献   

7.
Support vector machine (SVM) is a supervised machine learning approach that was recognized as a statistical learning apotheosis for the small-sample database. SVM has shown its excellent learning and generalization ability and has been extensively employed in many areas. This paper presents a performance analysis of six types of SVMs for the diagnosis of the classical Wisconsin breast cancer problem from a statistical point of view. The classification performance of standard SVM (St-SVM) is analyzed and compared with those of the other modified classifiers such as proximal support vector machine (PSVM) classifiers, Lagrangian support vector machines (LSVM), finite Newton method for Lagrangian support vector machine (NSVM), Linear programming support vector machines (LPSVM), and smooth support vector machine (SSVM). The experimental results reveal that these SVM classifiers achieve very fast, simple, and efficient breast cancer diagnosis. The training results indicated that LSVM has the lowest accuracy of 95.6107 %, while St-SVM performed better than other methods for all performance indices (accuracy = 97.71 %) and is closely followed by LPSVM (accuracy = 97.3282). However, in the validation phase, the overall accuracies of LPSVM achieved 97.1429 %, which was superior to LSVM (95.4286 %), SSVM (96.5714 %), PSVM (96 %), NSVM (96.5714 %), and St-SVM (94.86 %). Value of ROC and MCC for LPSVM achieved 0.9938 and 0.9369, respectively, which outperformed other classifiers. The results strongly suggest that LPSVM can aid in the diagnosis of breast cancer.  相似文献   

8.
Software defect prediction is an important decision support activity in software quality assurance. The limitation of the labelled modules usually makes the prediction difficult, and the class‐imbalance characteristic of software defect data leads to negative influence on decision of classifiers. Semi‐supervised learning can build high‐performance classifiers by using large amount of unlabelled modules together with the labelled modules. Ensemble learning achieves a better prediction capability for class‐imbalance data by using a series of weak classifiers to reduce the bias generated by the majority class. In this paper, we propose a new semi‐supervised software defect prediction approach, non‐negative sparse‐based SemiBoost learning. The approach is capable of exploiting both labelled and unlabelled data and is formulated in a boosting framework. In order to enhance the prediction ability, we design a flexible non‐negative sparse similarity matrix, which can fully exploit the similarity of historical data by incorporating the non‐negativity constraint into sparse learning for better learning the latent clustering relationship among software modules. The widely used datasets from NASA projects are employed as test data to evaluate the performance of all compared methods. Experimental results show that non‐negative sparse‐based SemiBoost learning outperforms several representative state‐of‐the‐art semi‐supervised software defect prediction methods. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

9.
在监督或半监督学习的条件下对数据流集成分类进行研究是一个很有意义的方向.从基分类器、关键技术、集成策略等三个方面进行介绍,其中,基分类器主要介绍了决策树、神经网络、支持向量机等;关键技术从增量、在线等方面介绍;集成策略主要介绍了boosting、stacking等.对不同集成方法的优缺点、对比算法和实验数据集进行了总结与分析.最后给出了进一步研究方向,包括监督和半监督学习下对于概念漂移的处理、对于同质集成和异质集成的研究,无监督学习下的数据流集成分类等.  相似文献   

10.
We present a maximum margin parameter learning algorithm for Bayesian network classifiers using a conjugate gradient (CG) method for optimization. In contrast to previous approaches, we maintain the normalization constraints on the parameters of the Bayesian network during optimization, i.e., the probabilistic interpretation of the model is not lost. This enables us to handle missing features in discriminatively optimized Bayesian networks. In experiments, we compare the classification performance of maximum margin parameter learning to conditional likelihood and maximum likelihood learning approaches. Discriminative parameter learning significantly outperforms generative maximum likelihood estimation for naive Bayes and tree augmented naive Bayes structures on all considered data sets. Furthermore, maximizing the margin dominates the conditional likelihood approach in terms of classification performance in most cases. We provide results for a recently proposed maximum margin optimization approach based on convex relaxation. While the classification results are highly similar, our CG-based optimization is computationally up to orders of magnitude faster. Margin-optimized Bayesian network classifiers achieve classification performance comparable to support vector machines (SVMs) using fewer parameters. Moreover, we show that unanticipated missing feature values during classification can be easily processed by discriminatively optimized Bayesian network classifiers, a case where discriminative classifiers usually require mechanisms to complete unknown feature values in the data first.  相似文献   

11.
Manifold learning methods for unsupervised nonlinear dimensionality reduction have proven effective in the visualization of high dimensional data sets. When dealing with classification tasks, supervised extensions of manifold learning techniques, in which class labels are used to improve the embedding of the training points, require an appropriate method for out-of-sample mapping.In this paper we propose multi-output kernel ridge regression (KRR) for out-of-sample mapping in supervised manifold learning, in place of general regression neural networks (GRNN) that have been adopted by previous studies on the subject. Specifically, we consider a supervised agglomerative variant of Isomap and compare the performance of classification methods when the out-of-sample embedding is based on KRR and GRNN, respectively. Extensive computational experiments, using support vector machines and k-nearest neighbors as base classifiers, provide statistical evidence that out-of-sample mapping based on KRR consistently dominates its GRNN counterpart, and that supervised agglomerative Isomap with KRR achieves a higher accuracy than direct classification methods on most data sets.  相似文献   

12.
Soft learning vector quantization   总被引:3,自引:0,他引:3  
Seo S  Obermayer K 《Neural computation》2003,15(7):1589-1604
Learning vector quantization (LVQ) is a popular class of adaptive nearest prototype classifiers for multiclass classification, but learning algorithms from this family have so far been proposed on heuristic grounds. Here, we take a more principled approach and derive two variants of LVQ using a gaussian mixture ansatz. We propose an objective function based on a likelihood ratio and derive a learning rule using gradient descent. The new approach provides a way to extend the algorithms of the LVQ family to different distance measure and allows for the design of "soft" LVQ algorithms. Benchmark results show that the new methods lead to better classification performance than LVQ 2.1. An additional benefit of the new method is that model assumptions are made explicit, so that the method can be adapted more easily to different kinds of problems.  相似文献   

13.
This paper presents the formulation and performance analysis of four techniques for detection of a narrowband acoustic source in a shallow range-independent ocean using an acoustic vector sensor (AVS) array. The array signal vector is not known due to the unknown location of the source. Hence all detectors are based on a generalized likelihood ratio test (GLRT) which involves estimation of the array signal vector. One non-parametric and three parametric (model-based) signal estimators are presented. It is shown that there is a strong correlation between the detector performance and the mean-square signal estimation error. Theoretical expressions for probability of false alarm and probability of detection are derived for all the detectors, and the theoretical predictions are compared with simulation results. It is shown that the detection performance of an AVS array with a certain number of sensors is equal to or slightly better than that of a conventional acoustic pressure sensor array with thrice as many sensors.  相似文献   

14.
Adaptive sparseness for supervised learning   总被引:14,自引:0,他引:14  
The goal of supervised learning is to infer a functional mapping based on a set of training examples. To achieve good generalization, it is necessary to control the "complexity" of the learned function. In Bayesian approaches, this is done by adopting a prior for the parameters of the function being learned. We propose a Bayesian approach to supervised learning, which leads to sparse solutions; that is, in which irrelevant parameters are automatically set exactly to zero. Other ways to obtain sparse classifiers (such as Laplacian priors, support vector machines) involve (hyper)parameters which control the degree of sparseness of the resulting classifiers; these parameters have to be somehow adjusted/estimated from the training data. In contrast, our approach does not involve any (hyper)parameters to be adjusted or estimated. This is achieved by a hierarchical-Bayes interpretation of the Laplacian prior, which is then modified by the adoption of a Jeffreys' noninformative hyperprior. Implementation is carried out by an expectation-maximization (EM) algorithm. Experiments with several benchmark data sets show that the proposed approach yields state-of-the-art performance. In particular, our method outperforms SVMs and performs competitively with the best alternative techniques, although it involves no tuning or adjustment of sparseness-controlling hyperparameters.  相似文献   

15.
For the last years, a considerable amount of attention has been devoted to the research about the link prediction (LP) problem in complex networks. This problem tries to predict the likelihood of an association between two not interconnected nodes in a network to appear in the future. One of the most important approaches to the LP problem is based on supervised machine learning (ML) techniques for classification. Although many works have presented promising results with this approach, choosing the set of features (variables) to train the classifiers is still a major challenge. In this article, we report on the effects of three different automatic variable selection strategies (Forward, Backward and Evolutionary) applied to the feature-based supervised learning approach in LP applications. The results of the experiments show that the use of these strategies does lead to better classification models than classifiers built with the complete set of variables. Such experiments were performed over three datasets (Microsoft Academic Network, Amazon and Flickr) that contained more than twenty different features each, including topological and domain-specific ones. We also describe the specification and implementation of the process used to support the experiments. It combines the use of the feature selection strategies, six different classification algorithms (SVM, K-NN, naïve Bayes, CART, random forest and multilayer perceptron) and three evaluation metrics (Precision, F-Measure and Area Under the Curve). Moreover, this process includes a novel ML voting committee inspired approach that suggests sets of features to represent data in LP applications. It mines the log of the experiments in order to identify sets of features frequently selected to produce classification models with high performance. The experiments showed interesting correlations between frequently selected features and datasets.  相似文献   

16.
检测恶意URL对防御网络攻击有着重要意义. 针对有监督学习需要大量有标签样本这一问题, 本文采用半监督学习方式训练恶意URL检测模型, 减少了为数据打标签带来的成本开销. 在传统半监督学习协同训练(co-training)的基础上进行了算法改进, 利用专家知识与Doc2Vec两种方法预处理的数据训练两个分类器, 筛选两个分类器预测结果相同且置信度高的数据打上伪标签(pseudo-labeled)后用于分类器继续学习. 实验结果表明, 本文方法只用0.67%的有标签数据即可训练出检测精确度(precision)分别达到99.42%和95.23%的两个不同类型分类器, 与有监督学习性能相近, 比自训练与协同训练表现更优异.  相似文献   

17.
This study presents an image segmentation system that automatically segments and labels T1-weighted brain magnetic resonance (MR) images. The method is based on a combination of unsupervised learning algorithm of the self-organizing maps (SOM) and supervised learning vector quantization (LVQ) methods. Stationary wavelet transform (SWT) is applied to the images to obtain multiresolution information for distinguishing different tissues. Statistical information of the different tissues is extracted by applying spatial filtering to the coefficients of SWT. A multidimensional feature vector is formed by combining SWT coefficients and their statistical features. This feature vector is used as input to the SOM. SOM is used to segment images in a competitive unsupervised approach and an LVQ system is used for fine-tuning. Results are evaluated using Tanimoto similarity index and are compared with manually segmented images. Quantitative comparisons of our system with the other methods on real brain MR images using Tanimoto similarity index demonstrate that our system shows better segmentation performance for the gray matter while it gives average results for white matter.  相似文献   

18.
In the last two decades, non-invasive methods through acoustic analysis of voice signal have been proved to be excellent and reliable tool to diagnose vocal fold pathologies. This paper proposes a new feature vector based on the wavelet packet transform and singular value decomposition for the detection of vocal fold pathology. k-means clustering based feature weighting is proposed to increase the distinguishing performance of the proposed features. In this work, two databases Massachusetts Eye and Ear Infirmary (MEEI) voice disorders database and MAPACI speech pathology database are used. Four different supervised classifiers such as k-nearest neighbour (k-NN), least-square support vector machine, probabilistic neural network and general regression neural network are employed for testing the proposed features. The experimental results uncover that the proposed features give very promising classification accuracy of 100% for both MEEI database and MAPACI speech pathology database.  相似文献   

19.
Feature selection is an important data preprocessing step for the construction of an effective bankruptcy prediction model. The prediction performance can be affected by the employed feature selection and classification techniques. However, there have been very few studies of bankruptcy prediction that identify the best combination of feature selection and classification techniques. In this study, two types of feature selection methods, including filter‐ and wrapper‐based methods, are considered, and two types of classification techniques, including statistical and machine learning techniques, are employed in the development of the prediction methods. In addition, bagging and boosting ensemble classifiers are also constructed for comparison. The experimental results based on three related datasets that contain different numbers of input features show that the genetic algorithm as the wrapper‐based feature selection method performs better than the filter‐based one by information gain. It is also shown that the lowest prediction error rates for the three datasets are provided by combining the genetic algorithm with the naïve Bayes and support vector machine classifiers without bagging and boosting.  相似文献   

20.
与基于Voting方法的组合分类器相比,提出基于Stacking算法的多分类器组合方法.通过构造一个两层的叠加式框架结构,将4种分类器(fnTBL,SNoW,SVM,MBL)进行了组合,并融合各种可能的上下文信息作为各层分类器的输入特征向量,在中文组块识别中取得了较好的效果.实验结果表明.组合后的分类器无论在准确率还是召回率上都有所提高,在哈尔滨工业大学树库语料的测试下达到了F=93.64的结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号