首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
多模式卫星导航接收机中双频段LNA设计   总被引:1,自引:1,他引:0  
设计出一款应用于多模式卫星导航接收机射频前端的双波段LNA,该电路可以工作在1.575GHz和1.267GHz两个波段附近,覆盖了当今各种卫星导航系统的载波频段.LNA的输入阻抗和输出阻抗均被匹配到50Ω,电路采用0.18μmCMOS工艺实现.测试结果表明该电路在1.575GHz和1.267GHz两个波段上噪声系数分别为0.88dB和0.78dB,功率增益分别为25.5dB和25.9dB,S11分别为-16dB和-12.5dB,1dB压缩点分别为-23.4dBm和-23.6dBm,1.8V供电电压条件下静态工作电流均为4.0mA.电路在上述两个频段上稳定性均满足要求.  相似文献   

2.
6?10 GHz ultra-wideband CMOS LNA   总被引:1,自引:0,他引:1  
A two-stage matched ultra-wideband CMOS low noise amplifier (LNA) is presented. The LNA is designed to achieve a low noise figure with high voltage gain. The LNA fabricated in a 0.13 mum CMOS process shows a 3.9 dB average noise figure with a 27 dB voltage gain in the 6-10 GHz frequency band with a power consumption of 14 mW.  相似文献   

3.
通过一个符合性能指标的,用于射频接收系统的CMOS低噪声放大性能的设计,讨论了深亚微米MOSFET的噪声情况,并在满足增旋和功耗的前提下,对低噪声放大噪声性能进行分析和优化,该LNA工作在2.5GHz电源电压,直流功耗为25mW,能够提供19dB的增益(S21),而噪声系数仅为2.5dB,同时输入匹配良好,S11为-45dB,整个电路只采用了一个片外电感使电路保持谐振,此设计结果证明CMOS工艺在射频集成电路设计领域具有可观的潜力。  相似文献   

4.
A novel modified resistive feedback structure for designing wideband low-noise amplifiers (LNAs) is proposed and demonstrated in this paper. Techniques including feedback through a source follower, an R–C feedback network, a gate peaking inductor inside the feedback loop, and neutralization capacitors are used. Bond-wire inductors and electrostatic devices (ESDs) are co-designed to improve the chip performance. Two LNAs, LNA1 and LNA2, were fabricated using a TSMC digital 90-nm CMOS technology. Both chips were tested on board using chip-on-board packages with ESD diodes added at the inputs and outputs. LNA1 achieves a 3-dB bandwidth of 9 GHz with 10 dB of power gain and a minimum noise figure (NF) of 4.2 dB. LNA2 achieves a 3-dB bandwidth of 3.2 GHz with 15.5 dB of power gain and a minimum NF of 1.76 dB. The two LNAs have third-order intermodulation intercept points of $-$8 and $-$9 dBm. Their power consumptions are 20 and 25 mW with a 1.2-V supply, respectively.   相似文献   

5.
设计了一种小型化限幅低噪声放大器。采用Lange桥平衡结构,在实现低噪声的同时,得到较小的输入输出电压驻波比。采用集总参数和分布参数元件,实现了各级匹配。该小型化限幅低噪声放大器工作在R波段(2.1~2.5 GHz),噪声系数低于1 dB,输入输出驻波系数小于1.4,增益大于31 dB,带内增益波动只有±0.2 dB。通过SP2D开关实现两路输出,输出隔离度大于42 dB。  相似文献   

6.
Low-power W-band CPWG InAs/AlSb HEMT low-noise amplifier   总被引:1,自引:0,他引:1  
We present the development of a low-power W-band low-noise amplifier (LNA) designed in a 200-nm InAs/AlSb high electron mobility transistor (HEMT) technology fabricated on a 50-/spl mu/m GaAs substrate. A single-stage coplanar waveguide with ground (CPWG) LNA is described. The LNA exhibits a noise figure of 2.5 dB and an associated gain of 5.6 dB at 90 GHz while consuming 2.0 mW of total dc power. This is, to the best of our knowledge, the lowest reported noise figure for an InAs/AlSb HEMT LNA at 90 GHz. Biased for maximum gain, the single-stage amplifier presents 6.7-dB gain and an output 1-dB gain compression point (P1dB) of -6.7dBm at 90 GHz. The amplifier provides broad-band gain, greater than 5dB over the entire W-band.  相似文献   

7.
设计、研制了一种工作在L波段的GaAs单片低噪声放大器。该放大器在HP-8510B网络分析仪和HP-8970B自动噪声仪上的测试结果为:1.1~1.5GHZ频段,NF≤2.0dB,G≥18dB,VSWR(in,out)≤2:1,增益起伏≤0.5dB;在1.5~2.0GHZ频段NF≤2.5dB,G≥18dB,VSWR(in,out)≤2:1,增益起伏≤±0.5dB。  相似文献   

8.
基于Jazz 0.35 μm SiGe工艺,设计了一款工作在3~10 GHz频带范围内的超宽带低噪声放大器.该放大器采用电阻负反馈结构,并在发射极并联电容,以补偿晶体管高频增益的下降.仿真结果显示,在整个工作频带内,放大器的增益在22.3 dB以上,平坦度保持在1 dB以内,噪声系数在3.7 dB到4.6 dB之间,输入输出反射系数(S_(11)及S_(22))均在-12 dB以下.整个设计最大的优点是没有用到片上电感,使得芯片面积大大缩小,对于商业应用具有极大的吸引力.  相似文献   

9.
High-performance W-band monolithic one- and two-stage low noise amplifiers (LNAs) based on pseudomorphic InGaAs-GaAs HEMT devices have been developed. The one-stage amplifier has a measured noise figure of 5.1 dB with an associated gain of 7 dB from 92 to 95 GHz, and the two-stage amplifier has a measured small signal gain of 13.3 dB at 94 GHz and 17 dB at 89 GHz with a noise figure of 5.5 dB from 91 to 95 GHz. An eight-stage LNA built by cascading four of these monolithic two-stage LNA chips demonstrates 49 dB gain and 6.5 dB noise figure at 94 GHz. A rigorous analysis procedure was incorporated in the design, including accurate active device modeling and full-wave EM analysis of passive structures. The first pass success of these LNA chip designs indicates the importance of a rigorous design/analysis methodology in millimeter-wave monolithic IC development  相似文献   

10.
The authors discuss the development of 110-120-GHz monolithic low-noise amplifiers (LNAs) using 0.1-mm pseudomorphic AlGaAs/InGaAs/GaAs low-noise HEMT technology. Two 2-stage LNAs have been designed, fabricated, and tested. The first amplifier demonstrates a gain of 12 dB at 112 to 115 GHz with a noise figure of 6.3 dB when biased for high gain, and a noise figure of 5.5 dB is achieved with an associated gain of 10 dB at 113 GHz when biased for low-noise figure. The other amplifier has a measured small-signal gain of 19.6 dB at 110 GHz with a noise figure of 3.9 dB. A noise figure of 3.4 dB with 15.6-dB associated gain was obtained at 113 GHz. The authors state that the small-signal gain and noise figure performance for the second LNA are the best results ever achieved for a two-stage HEMT amplifier at this frequency band  相似文献   

11.
A 20-GHz low-noise amplifier (LNA) with an active balun fabricated in a 0.25-/spl mu/m SiGe BICMOS (f/sub t/=47 GHz) technology was presented by the authors in 2004. The LNA achieves close to 7 dB of gain and a noise figure of 4.9 dB with all ports simultaneously matched to 50 /spl Omega/ with better than -16 dB of return loss. The amplifier is highly linear with an IP/sub 1dB/ of 0 dBm and IIP/sub 3/ of 9 dBm, while consuming 14 mA of quiescent current from a 3.3-V rail, with temperature-compensated biasing. To the authors' knowledge, the LNA delivers the lowest reported noise figure and highest linearity for a silicon implementation of a combined active balun and LNA at 20 GHz, and is the first implementation of an active balun with an LC degenerated emitter-coupled pair. Here we expand on that work, with an analysis of the balun operation and noise optimization of the design.  相似文献   

12.
A 24-GHz low-noise amplifier (LNA) was designed and fabricated in a standard 0.18-/spl mu/m CMOS technology. The LNA chip achieves a peak gain of 13.1 dB at 24 GHz and a minimum noise figure of 3.9 dB at 24.3 GHz. The supply voltage and supply current are 1 V and 14 mA, respectively. To the author's knowledge, this LNA demonstrates the lowest noise figure among the reported LNAs in standard CMOS processes above 20 GHz.  相似文献   

13.
Design and Analysis of Broadband Dual-Gate Balanced Low-Noise Amplifiers   总被引:2,自引:0,他引:2  
In this paper, we present three MMIC low-noise amplifiers using dual-gate GaAs HEMT devices in a balanced amplifier configuration. The designs target three different frequency bands including 4-9 GHz, 9-20 GHz, and 20-40 GHz. These dual-gate balanced designs demonstrate the excellent qualities of balanced amplifiers in terms of stability and matched characteristics, while demonstrating higher bandwidth than designs with a single-stage common-source device. Additionally, noise performance is excellent, with the 4-9 GHz LNA demonstrating <1.75 dB noise figure (NF), the 9-20 GHz LNA <2.75 dB NF and the 20-40 GHz LNA <2.5 dB NF. Demonstrating high gain and excellent bandwidth, the dual-gate devices seem a logical choice for the balanced amplifier topology.  相似文献   

14.
张振  范如东  罗俊 《微电子学》2012,42(4):463-465,476
介绍了一种小型化平衡式限幅低噪声放大器。该放大器采用Lange桥平衡结构,在实现低噪声的同时,保证了小电压驻波比;在3.0~3.5GHz频带内,噪声系数小于1.3dB,输入输出驻波系数小于1.3,增益大于27dB,平坦度±0.6dB以内,输出1dB压缩点大于12dBm。该放大器能够承受最大5W的连续波功率输入,且大功率输入时的驻波系数小于1.3。  相似文献   

15.
A full W-band Low Noise Amplifier (LNA) Module is designed and fabricated in this letter. A broadband transition is introduced in this module. The proposed transition is designed, optimized based on the results from numerical simulations. The results show that 1 dB bandwidth of the transition ranges from 61 to 117 GHz. For the purpose of verification, two transitions in back-to-back connection are measured. The results show that transmission loss is only about 0.9-1.7dB. This transition is used to interface integrated circuits to waveguide components. The characteristic of the LNA module is measured after assembly. It exhibits a broad bandwidth of 75 to 110 GHz , has a small signal gain above 21 dB. The noise figure is lower than 5dB throughout the entire W-band (below 3 dB from 89 to 95GHz) at a room temperature. The proposed LNA module exhibits potential for millimeter wave applications due to its high small signal gain, low noise, and low dc power consumption  相似文献   

16.
提出了一种基于双反馈电流复用结构的新型CMOS超宽带(UWB)低噪声放大器(LNA),放大器工作在2~12 GHz的超宽带频段,详细分析了输入输出匹配、增益和噪声系数的性能。设计采用TSMC 0.18μm RF CMOS工艺,在1.4 V工作电压下,放大器的直流功耗约为13mW(包括缓冲级)。仿真结果表明,在2~12 GHz频带范围内,功率增益为15.6±1.4 dB,输入、输出回波损耗分别低于-10.4和-11.5 dB,噪声系数(NF)低于3 dB(最小值为1.96 dB),三阶交调点IIP3为-12 dBm,芯片版图面积约为712μm×614μm。  相似文献   

17.
以一种经典的窄带低噪声放大器结构为基础,分析级联放大器的S参数,通过优化元件参数,获得了一种在3.6~4.7 GH z范围内具有低输入回波损耗、低噪声系数的放大器。采用标准的0.18μm RF CM O S工艺进行了设计和实现。芯片面积为0.6 mm×1.5 mm。测试结果表明:在3.6~4.7 GH z的范围内,该宽带低噪声放大器输入回波损耗小于-14 dB;噪声系数小于2.8 dB,增益大于10 dB。在1.8 V电源下功耗约为45 mW。  相似文献   

18.
We report the first demonstration of W-band metamorphic HEMTs/LNA MMICs using an AlGaAsSb lattice strain relief buffer layer on a GaAs substrate. 0.1×50 μm low-noise devices have shown typical extrinsic transconductance of 850 mS/mm with high maximum drain current of 700 mA/mm and gate-drain breakdown voltage of 4.5 V. Small-signal S-parameter measurements performed on the 0.1-μm devices exhibited an excellent fT of 225 GHz and maximum stable gain (MSG) of 12.9 dB at 60 GHz and 10.4 dB at 110 GHz. The three-stage W-band LNA MMIC exhibits 4.2 dB noise figure with 18 dB gain at 82 GHz and 4.8 dB noise figure with 14 dB gain at 89 GHz, The gain and noise performance of the metamorphic HEMT technology is very close to that of the InP-based HEMT  相似文献   

19.
韩洪征  王志功 《电子工程师》2008,34(1):22-25,46
介绍了一种应用于IEEE802.11b/g无线局域网接收机射频前端的设计。基于直接下变频的系统架构。接收机集成了低噪声放大器、I/Q下变频器、去直流偏移滤波器、基带放大器和信道选择滤波器。电路采用TSMC0.18μm CMOS工艺设计,工作在2.4GHz ISM(工业、科学和医疗)频段,实现的低噪声放大器噪声系数为0.84dB,增益为16dB,S11低于-15dB,功耗为13mW;I/Q下变频器电压增益为2dB,输入1dB压缩点为-1 dBm,噪声系数为13dB,功耗低于10mw。整个接收机射频前端仿真得到的噪声系数为3.5dB,IIP3为-8dBm,IP2大于30dBm,电压增益为31dB,功耗为32mW。  相似文献   

20.
正This paper presents a wideband low noise amplifier(LNA) for multi-standard radio applications.The low noise characteristic is achieved by the noise-canceling technique while the bandwidth is enhanced by gateinductive -peaking technique.High-frequency noise performance is consequently improved by the flattened gain over the entire operating frequency band.Fabricated in 0.18μm CMOS process,the LNA achieves 2.5 GHz of -3 dB bandwidth and 16 dB of gain.The gain variation is within±0.8 dB from 300 MHz to 2.2 GHz.The measured noise figure(NF) and average HP3 are 3.4 dB and -2 dBm,respectively.The proposed LNA occupies 0.39 mm2 core chip area.Operating at 1.8 V,the LNA drains a current of 11.7 mA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号