首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在MM-2单磁镜装置上完成了电子回旋共振加热实验。装置中心的磁场强度约为3×10~(-1)T,磁镜比等于2.64:1,磁峰距为60cm,真空室内径为20cm,通过微波辐射耦合到中心平面的真空室而产生等离子体并使之加热。微波功率源是一个振动陀螺仪,它在10ms的脉冲持续时间内产生15MHz频率的30kW的输出功率。当出现反磁性信号时,观察到了硬X射线信号。轫致辐射发射分析表明:热电子温度约为25~30keV,通过多栅能量分析器测得的电子密度约为1.1~3.9×10~(10)cm~(-3)。  相似文献   

2.
CF—Ⅱ等离子体环加热和注入实验,是利用场反向θ-箍缩所产生的等离子体环,通过物理变化导致等离子体环进行轴向激波加热向约束区传输,注入到磁镜系统中约束,以达到延长等离子体环的约束时间。 在形成区产生的等离子体环的参数是:环半径R_s约为4cm,拉长度L_s约为40cm,电子密度n_e=10~(15)cm~(-3),电子温度T_e=20eV,约束时间τ约为30μs。等离子体环以7.8×10~6cm/s的速度从形成区向约束区传输,加热后的电子温度大约为34eV。  相似文献   

3.
CF-Ⅱ等离子体环加热和注入实验,是利用场反向θ-箍缩所产生的等离子体环,通过物理变化导致等离子体环进行轴向激波加热向约束区传输,注入到磁镜系统中约束,以达到延长等离子体环的约束时间。在形成区产生的等离子体环的参数是:环半径R约为4cm,拉长度L约为40cm,电子密度n_e=10~(15)cm~(-3),电子温度T_c=20eV,约束时间τ约为30μs。等离子体环以7.8×10~6cm/s的速度从形成区向约束区传输,加热后的电子温度大约为34eV。  相似文献   

4.
通过注入15kW、15GHz的微波进行电子回旋共振加热,在MM-2简单磁镜中建立了热电子环。电子环半径约为4~5cm。实验观察到了电子环对低频扰动的抑制作用。从低频扰动的再次爆发可推测在微波关断以后热电子环仍可存在10~15ms,而表征热电子存在的X射线辐射可延续50~70ms。微波启动的头2ms的主要作用是电离工作气体,在15kW、9ms微波注入 的实验条件下,建立热电子环的最佳充氢气压为1.2×10~(-3)Pa。  相似文献   

5.
给出了在简单磁镜装置MM-2及其改进装置MM-2U中电子回旋共振加热(ECRH)和离子回旋共振加热(ICRH)的实验结果。在电子回旋共振加热的实验中,使用一个频率为15GHz,功率约为30kW的微波源,建立了热电子温度为140~170kev的热电子环,这是半径为7~10cm,空间分布为一个非封闭的环。在离子回旋共振加热实验中,使用一个频率为4.81MHz,功率为40kW的射频源,对ECR等离子体进行离子回旋共振加热,观测到离子与电子受到了不同程度的加热,离子温度由原来的平均3eV升到8eV,电子温度由原来的平均20eV升到30eV,且等离子体电位及等离子体的约束特性均有所改变。  相似文献   

6.
给出了在简单磁镜装置MM-2及其改进装置MM-2U中电子回旋共振加热(ECRH)和离子回旋共振加热(ICRH)的实验结果。在电子回旋共振加热的实验中,使用一个频率为15GHz,功率约为30kW的微波源,建立了热电子温度为140~170keV的热电子环,这  相似文献   

7.
介绍了MM-4U装置的结构、原理和初步实验结果。这些结果主要是:用电子注入可以在装置系统中建立等离子体;测得轴向等离子体电位分布,东、西会切中心和中心室的等离子体电位分别为-180V、-164V和-1.8V;测得轴向电子密度分布与电位分布有相同形式,3个中心的密度分别为1.7×10~(11)cm~(-3),4.7×10~(10)cm~(-3)和7.5×10~7cm~(-3);东、西会切中心电子温度分别为(19.9±1.6)eV、(20.7±1.7)eV;距西端会切中心8cm处的等离子体压强约为6.76Pa,β约为1.7×10~(-3);在中心室观测到不稳定性,振荡频率为7~9.2kHz。对上述结果进行了分析,提出了进一步研究的实验课题。  相似文献   

8.
介绍了MM-4U装置的结构、原理和初步实验结果。这些结果主要是:用电子注入可以在装置系统中建立等离子体;测得轴向等离子体电位分布,东、西会切中心和中心室的等离子体电位分别为-180V、-164V和-1.8V;测得轴向电子密度分布与电位分布有相同形式,3个中心的密度分别为1.7×10~(11)cm~(-3),4.7×10~(10)cm~(-3)和7.5×10~7cm~(-3);东、西会切中心电子温度分别为(19.9±1.6)eV、(20.7±1.7)eV;距西端会切中心8cm处的等离子体压强约为6.76Pa,β约为1.7×10~(-3);在中心室观测到不稳定性,振荡频率为7~9.2kHz。对上述结果进行了分析,提出了进一步研究的实验课题。  相似文献   

9.
一种新的气体加料方法——分子束注入,在HL-1M装置上进行了实验。脉冲高速分子束是由高压气体通过拉瓦尔(Laval)喷口形成的。准直的氢分子束平均速度约为500m·s~(-1)。一个分子束脉冲通过拉瓦尔喷口进入真空室的粒子数为6×10~(19)个。一系列氦分子束脉冲注入HL-1M低密度((?)=4×10~(18)m~(-3))氢等离子体,氦粒子穿透深度可达到12cm,电子密度上升率达到3.1×10~(-20)m~(-3)·s~(-1)而始终保持稳态,密度峰值为5.6×10~(19)m~(-3)。在氦分子束脉冲注入后100ms,电子密度剖面峰化因子达到最大值Q_n=n_e(O)/〈n_e〉=1.51,其中,n_e(O)为中心密度,〈n_e〉为体平均密度。由反磁测量得出能量约束时间τ_E为28ms,较在相同运行条件下常规喷气加料高30%。分子束加料τ_E的改善和Q_n值的增加可与HL-1M装置的小弹丸注入和ASDEX装置[Kaufmann M et al,Nucl.Fusion 28(1988)827]的低速弹丸注入结果相比拟。除了氦的同位素效应之外,粒子注入的深度引起密度剖面峰化是约束改善的重要因素。因为在HL-1M装置常规喷气加料的Q_n值仅为1.4。分子束加料后的粒子约束时间比加料前高6倍。  相似文献   

10.
本文扼要地介绍了稳态超导磁镜装置的概貌。给出了在1977——1982年期间装置真空系统、电气系统、粒子束物理对中、离子注入器、碳弧中性化室和捕集室低温超导系统的局部调试和装置联合工程调试的结果。通过对装置的局部调试和联调,达到了第一期工程指标。离子源能量100keV,引出总离子流0.7A,H_2~ 束在透镜入口达120mA,注入到捕集室中心为26mA,最高注入中性束等效流强为7.2mA。捕集室超导磁体在4.2K液氦条件下实现超导9h,当磁体升流133A时,捕集室中心磁场达21.7kGs。采用了冷凝吸附抽气技术,捕集室静真空度最高达4.8×10~(-9)Torr,注束时动真空度为3.5×10~(-8)Torr。  相似文献   

11.
使用研制的以球形3 He正比计数器为中子灵敏元件的水下中子测量装置对易水湖水下1~25m范围内不同深度处的天然中子进行了测量,并结合相应的蒙特卡罗模拟,获得了易水湖水下不同深度处的低能天然中子产生速率和注量率随湖水深度的变化规律。结果表明:在易水湖水面下方1~10m范围内,低能天然中子产生速率c(cm~(-3)·s~(-1))随深度h(cm)呈指数规律下降,关系式为c=2.7×10~(-5)e~(-0.005 7h),10m以下的变化较为平缓。根据测量结果外推,在易水湖水面附近,水中低能天然中子的产生速率约为2.7×10~(-5) cm~(-3)·s~(-1)(或2.7×10~(-5) g~(-1)·s~(-1))。  相似文献   

12.
等离子体的磁镜压缩实验与理论   总被引:1,自引:0,他引:1  
本文叙述了在研究绝热压缩加热和磁镜约束系统的装置(简称“小龙”装置)上所进行过的一些实验和理论研究工作.主要结果如下:(1)在直流情况下的初始等离子体密度已大于1.65×10~(13)粒子/厘米~3,初始温度约5电子伏.(2)绝热压缩加热是有效的,并且在“小龙”装置中加热符合二维绝热压缩规律.(3)间接证据表明,离子温度在200电子伏以上.(4)至今为止,“小龙”装置中粒子的损失机构主耍是粒子由于库伦碰撞而逸出磁镜.实验发现,这种损失存在两个不同的区域:大自由程区域和小自由程区域.对小自由程区域的损失作了简单的理论计算,结果和实验符合.(5)探测到温度高到5千电子伏的高能电子群,这些电子群的来源尚无法解释.(6)未发现任何强烈的不稳定迹象.  相似文献   

13.
正离子源在实验过程中,真空室的真空度需维持在(1~4)×10~(-3) Pa。由于真空环境是用于研制离子源的等离子体实验测试装置所必需的,因此,需要配备一套能连续工作、具有大抽速的真空泵组来维持相同的真空。1真空泵组抽速为了保持(1~4)×10~(-3) Pa的真空,需要真空泵组具有的有效抽速为:  相似文献   

14.
介于已有的喷气(Gas puffing)和弹丸注入(Ice pellet injection)之间,提出了一种新的托卡马克加料手段—脉冲超声分子束注入。在较高的粒子注入通量5×10~(19)脉冲~(-1)时,氢分子的速度仍可达到500m/s。一系列氦分子束脉冲注入初始密度为(?)=0.4×10~(19)m~(-3)HL-1M真空室氢等离子体,经过160ms,密度上升至(?)=5.4×10~(19)m~(-3)。根据脉冲分子束注入初期氦光谱(HeⅠ587.6nm)强度的径向分布,1/3峰高位于r=12cm附近。注入后粒子约束时间增加5倍。由于气体粒子注入深化,电子密度峰化因子Q_n=n_e(0)/  相似文献   

15.
建造了一台微波等离子体增强化学气相沉积实验装置,利用该装置实验研究了微波功率、工作气体种类、工作气压及磁场位形对等离子体特性影响。结果表明,在(10~(-1)~10~3)Pa的气压范围内,获得了稳定的微波等离子体。实验证实了氩气参与放电和外加磁场有助于降低所需的微波击穿功率和对等离子体有一定稳定作用。  相似文献   

16.
中国同位素与辐射行业协会(CIRA)对中国辐射加工现状进行了调研。结果显示,中国现有束流功率在5kW以上工业用加速器45座,总功率为2005kW;有设计源强为1.11×10~4TBq以上γ射线辐照装置48座,另有源强低于1.11×10~4TBq的γ射线辐照装置75座,  相似文献   

17.
本文主要介绍辐射合成PHEMA水凝胶动力学进程的一些研究结果:(1)在动力学进程中,首先单体HEMA被聚合为聚合物的溶胶,当聚合率达到约20%之后才开始产生凝胶。(2)这一聚合过程是按自由基机构进行:V_0∞I~(0.6)。(3)完成这一聚合—交联过程所需剂量很小,为不到1×10~4Gy即可得到高于90%的凝胶含量的水凝胶产物。(4)所得水凝胶具有优良的物理机械性能:吸水率:20~70%,透氧系数:(ηO_2):10~(-11)~10~(-9)ml·cm/cm~2·s·cmHg,ηCO_2:10~(-11)~10~(-9)ml·cm/cm~2·s·cmHg;抗张强度5~30kg/cm~2,延长率:100~300%。  相似文献   

18.
建造了一台微波等离子体增强化学气相沉积实验装置,利用该装置实验研究了微波功率、工作气体种类、工作气压及磁场位形对等离子体特性影响。结果表明,在(10~(-1)~  相似文献   

19.
介于已有的喷气(Gas puffing)和弹丸注入(Ice pellet injection)之间,提出了一种新的托卡马克加料手段——脉冲超声分子束注入。在较高的粒子注入通量5×10~(19)/脉冲时,氢分子的速度仍可达到500m/s。一系列氦分子束脉冲注入初始密度为(?)=0.4×10~(19)m~(-3)HL-1M真空室氢等离子体,经过160ms,密度上升至(?)=5.4×10~(19)m~(-3)。根据脉冲分子束注入初期氦光谱(He I 587·6nm)强度的径向分布,1/3峰高位于γ=12cm附近。注入  相似文献   

20.
中国同位素与辐射行业协会(CIRA)对中国辐射加工现状进行了调研。结果显示,中国现有束流功率在5kW以上工业用加速器45座,总功率为2005kW;有设计源强为1.11×10~4TBq以上γ射线辐照装置48座,另有源强低于1.11×10~4TBq的γ射线辐照装置75座,总装源量为4.63×10~5TBq。在中国,辐射加工主要用于生产化工产品(辐射交联线缆和热收缩制品),目前已出现一些产值超亿元的企业;辐射加工还用于食品灭菌和保鲜、医疗用品的灭菌消毒。烟道气的辐射脱硫和脱硝也正在开发利用中。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号